Preparation and Characterization of ZrO2 Nano-Particles by Supercritical Hydrolysis Process

Article Preview

Abstract:

ZrO2 nano-particles were successfully prepared by supercritical hydrolysis in two steps (hydrolysis and dehydration) and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser particle-size analyzer. The influences of operation parameters, including operation pressure and temperature, CO2 total flow and ratio of CO2 branch flow, on the particles were investigated experimentally. The results show that average particle size increases with the increase of the operation temperature, while it decreases with the increase of the operation pressure and the CO2 total flow. The smallest particles with average diameter of 793nm can be prepared under the condition: operation temperature and pressure of 50°C and 8MPa, CO2 total flow of 30 standard cubic centimeter per Minute and ratio of CO2 branch flow of 3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

979-983

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O.Cho, J. P.Chang, J. H.Min, S. et al. J. Appl. Phys. 93 (2003): 745-751.

Google Scholar

[2] J. A. Wang, M. A. Valenzuela, J. Salmones, et al. Catal. Today, 68 (2001) 21-27.

Google Scholar

[3] J. C. Wu, L. C.Cheng. J. Membr. Sci,, 167 (2000) 253-260.

Google Scholar

[4] X. L.Fang, C. F. Yang, J. Y.Chen. Engineering Chemistry & Metallurgy, 18 (1997) 67-72.

Google Scholar

[5] H. J.Noh, D. S.Seo, K. Hwan,et al. Mater. Lett. 57 (2003) 2425-2432.

Google Scholar

[6] L. P.Liang, Y. B. Gao, S. Y.Chen. Mater. Sci. Eng. 15 (1997) 33-39.

Google Scholar

[7] X. T.Liu, Y. F.Xu, W. Y.Fan. Journal of He Fei University of Technology (Natural Science), 21 (1998) 43-47.

Google Scholar

[8] W. R.Cannon, S. C.Danforth. J. Am. Ceram. Soc. 65 (1982 ) 34-39.

Google Scholar

[9] J. J. Wu, R. C. Flagan, O. J. Gregity. Appl. Phys. Lett. 48 (1986) 82-91.

Google Scholar

[10] E.Reverchon, G.Caputo, S.Correa. J. Supercrit. Fluids. 26 (2003) 253-260.

Google Scholar

[11] E. Alonso, I. Montequi, S. Lucas,. J. of Supercrit. Fluids. 39 (2007) 453-457.

Google Scholar

[12] A. N. Sabirzyanov, A. P. Ilin, A. R. Akhunov, et al. High Temperature, 40 (2000) 203-209.

Google Scholar

[13] A. Martin, M. J. Cocero. J. of Supercrit. Fluids. 32 (2004) 203-210.

Google Scholar

[14] V. Pessey, R. Garriga, F. Weill. J. Mater. Chem. 12 (2002) 958-965.

Google Scholar

[15] A. O'Neil, J. J. Watkins. Chem. Mater. 19 (2007) 5460-5465.

Google Scholar