Catalysis Reduction of NO and HCN/NH3 during Reburning: a Short Review

Article Preview

Abstract:

Reburning is effective to control NO emission. The paper presents a short review on recent research on catalysis reduction of NO and HCN/NH3 by some metal and their oxides during reburning. The major difficulties that limit NO reduction efficiency by reburning involve the re-oxidation of the intermediate products during reburning, HCN/NH3 and char nitrogen to NO. So far, results showed that Fe2O3 could reduce the formation of HCN/NH3 after reburning and metallic iron could directly reduce NO to N2. Temperature and co-existing gases influenced the catalysis performance of Fe and its oxides. Detailed mechanism and kinetics of the reactions should be further investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 354-355)

Pages:

365-368

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Miller, C. T. Bowman: Prog Energy & Combust Sci Vol. 15(1989),p.287.

Google Scholar

[2] T. E. Burch, F. R. Tillman, W. Y. Chen, et al.: Energy Fuels Vol. 5(1991), p.231.

Google Scholar

[3] B. J. Mereb, J. O. Wendt: Proc. Combust. Inst. Vol. 17(1990), p.1273.

Google Scholar

[4] Molina, E. C. Eddings, D. W. Pershing, et al.: Prog. Energy Combust. Sci. Vol. 26(2000), p.507.

Google Scholar

[5] S. C. Hill, L. D. Smoot: Prog. Energy Combust. Sci. Vol. 26(2000), p.417.

Google Scholar

[6] P. Glarborg, A. D. Jensen, J. E. Johnsson. Prog. Energy Combust. Sci.Vol.29(2003), p.89.

Google Scholar

[7] V. V. Lissianski, P. M. Maly, V. M. Zamansky: Ind. Eng. Chem. Res. Vol. 40(2001), p.3287.

Google Scholar

[8] V. V. Lissianski, V. M. Zamansky, P. M. Maly: Combust. Flame Vol.125(2001), p.1118.

Google Scholar

[9] W.Y. Chen, B. B. Gathitu: Fuel Vol.85(2006), p.1781.

Google Scholar

[10] Y. Su, B. B. Gathitu, W.Y. Chen: J. Safety Environ. Vol.11(2011), p.65.

Google Scholar

[11] Y. Su, B. B. Gathitu, W.Y. Chen: Fuel Vol.89(2010), p.2569.

Google Scholar

[12] Y. Su, B. B. Gathitu, W.Y. Chen: Acta Scientiae Circumstantiae Vol.31(2011), p.1181.

Google Scholar

[13] R.Guan, W. Li, H.n Chen, et al.: Fuel Proces. Technol. Vol. 85(2004), p.1025.

Google Scholar

[14] A. Xu, D. Kong, N. Tsubouchi, et al.: The 37th Coal Conference, The Japan Inst. Energy, 2000, p.417.

Google Scholar

[15] N. Hayhurst, A. D. Lawrence. Combust. Flame Vol. 110(1997), p.351.

Google Scholar

[16] N. Hayhurst, Y. Ninomiya: Chem. Eng. Sci. Vol.53(1998), p.1481.

Google Scholar

[17] N. Birks,G. H. Meier: Introduction to high temperature oxidation of metal (Edward Arnold, London, 1983)

Google Scholar

[18] A. Gradon, J. Lasek: Fuel Vol. 89(2010), p.3505.

Google Scholar

[19] H. Zhou, J. Lu, H. Zhou, et al.: Acta Scientiae Circumstantiae Vol. 21(2001), p.167.

Google Scholar

[20] W.Y. Chen, L. Ma: AIChE Journal Vol. 42(1996), p.1968.

Google Scholar

[21] W.Y. Chen, L.Tang: AIChE Journal Vol. 47(2001), p.2781.

Google Scholar

[22] Z. Zhao, W. Li, B. Li: Fuel Vol.81(2002), p.1559.

Google Scholar

[23] P. Glarborg, P. G. Kristensen, K. Dam-Johansen: Energy Fuels Vol. 14(2000), p.828.

Google Scholar

[24] R. Bilbao, M. U. Alzueta, A. Millera, et al.: Ind. Eng. Chem. Res. Vol. 34(1995), p.4540.

Google Scholar

[25] P. Kilpinen, P. Glarborg, M. Hupa: Ind. Eng. Chem. Res. Vol. 31(1992), p.1477.

Google Scholar