Pyrolysis Behavior and Kinetics of Polyurethane Insulation Materials from Waste Refrigerators

Article Preview

Abstract:

Pyrolysis characteristics and kinetics of polyurethane insulation materials from waste refrigerators were investigated using TG-FTIR technique under N2 atmosphere. Results showed that the whole thermal process could be divided into three stages and the main pyrolysis occurred in 260-600°C. The distribution activation energy model (DAEM) was applied to analyze the pyrolysis kinetics. The estimated activation energies ranged from 122.8 to 188 kJ/mol and the pre-exponential factors k0 varied from 108 to 1013 s-1. The composition of evolved gas included CFC-11, CO2, CH4, CO, NH3, HCN and some organic compounds, the evolution characteristics of main gas products had also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

1752-1758

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Herrera, G. Matuschek, A. Kettrup. Polymer Degradation and Stability, Vol.78 (2002), pp.323-331

DOI: 10.1016/s0141-3910(02)00181-7

Google Scholar

[2] R. Font, A. Fullana, J.A. Caballero et al. Journal of Analytical and Applied Pyrolysis, Vol. 58–59 (2001), pp.63-77

Google Scholar

[3] M.M. Esperanza, A.N. Garcia, R. Font et al. Journal of Analytical and Applied Pyrolysis, Vol.52 (1999), pp.151-166

Google Scholar

[4] K. Miura. Energy& Fuel, Vol.9(1995), pp.302-307

Google Scholar

[5] Z. Li, C.Liu, Z. Chen. Bioresource Technology, Vol.100 (2009), pp.948-952

Google Scholar

[6] T. Sonobe, N. Worasuwannarak. Fuel, Vol.87 (2008), pp.414-421

Google Scholar

[7] C. Quan, A. Li, N.Gao. Waste Management, Vol.29 (2009), pp.2353-2360

Google Scholar

[8] K. Miura. Energy& Fuel, Vol.12 (1998), pp.864-869.

Google Scholar

[9] S.A Channiwalla, P.P Parikh. Fuel, Vol.81 (2002), pp.1051-63.

Google Scholar

[10] R. Bilbao, J. F. Mastral, J. Ceamanos. et al. Journal of Analytical and Applied Pyrolysis, Vol. 37 (1996), pp.69-82

Google Scholar

[11] X. Li, H Cao, Y. Zhang. Journal of Applied Polymer Science, Vol. 102, (2006), pp.4149-4156

Google Scholar

[12] J. Shao, R. Yan, H. Chen. Energy & Fuels , Vol. 22 (2008), pp.38-45

Google Scholar

[13] J. Molto , R. Font, A. Galvez. J. Anal. Appl. Pyrolysis, Vol. 84 (2009), pp.68-78

Google Scholar

[14] J. Lefebvre, S. Duquesne, V. Mamleev. Polym. Adv. Technol. Vol.14, (2003), pp.796-801

Google Scholar

[15] Y.H. Park, J Kim, Seung-SooKim. Bioresource Technology. Vol.100 (2009), pp.400-405

Google Scholar

[16] E.Dyer, G.E.J. Newborn. J. Am. Chem. Soc. Vol.80 (1958), pp.5495-5498

Google Scholar

[17] E. Dyer, R.E. Read. J. Org. Chem. Vol. 26 (1961), pp.4388-4394.

Google Scholar

[18] G. Filardo, A. Galia, S. Gambino et al. The Journal of Supercritical Fluids, Vol.9 (1996), pp.234-237

Google Scholar

[19] Y. Zhang, Z. Xia, H. Huang et al. Polymer Testing, Vol.28 (2009), pp.264-269

Google Scholar