Zeolite Synthesis from Brazilian Coal Fly Ash for Removal of Zn2+ and Cd2+ from Water

Article Preview

Abstract:

A Brazilian fly ash sample (CM1) was used to synthesize zeolites by hydrothermal treatment. Products and raw materials were characterized in terms of real density (Helium Pycnometry), specific surface area (BET method), morphological analysis (SEM), chemical composition (XRF) and mineralogical composition (XRD). The zeolites (ZM1) from fly ash were used for metal ion removal from water. Results indicated that hydroxy-sodalite zeolite could be synthesized from fly ash sample. The zeolite presented higher specific surface area and lower SiO2/Al2O3 ratio than the ash precursor. The adsorption showed that cadmium is more preferentially adsorbed on ZM1 than zinc. The adsorption equilibrium time for both Zn2+ and Cd2+ was 20 hours in a batch process. The adsorption isotherms were better fitted by the Langmuir model and the highest percentages of removal using ZM1 were obtained at pH 6 and 5 and doses of 15 and 18 g L-1 for Zn 2+ and Cd2+ , respectively. Thermodynamic studies indicated that adsorption of Zn2+ and Cd2+ by ZM1 was a spontaneous, endothermic process and presented an increase of disorder at the interface solid/solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

1900-1908

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Wang, H. Wu: J. Hazard. Mater Vol. B136 (2006), p.482.

Google Scholar

[2] S. Wang, Y. Boyjoo, A. Choueib, Z.H. Zhu: Water Res Vol. 39 (2005), p.129.

Google Scholar

[3] X. Querol, N. Moreno, J.C. Umaña, A. Alastuey, E. Hernandez, A. Lopez-Soler, F. Plana: Int. J. Coal Geol Vol. 50 (2002), p.413.

Google Scholar

[4] J. C. Izidoro, D. A. Fungaro: Rev. Bras. Pesq. Des Vol. 9 (2007), p.101.

Google Scholar

[5] T. E. M. Carvalho, D. A. Fungaro, J. C. Izidoro: Quim. Nova Vol. 33 (2010), p.358.

Google Scholar

[6] K-M. Lee, Y-M. Jo: J. Mater. Cycles Waste Manag Vol. 12 (2010), p.212.

Google Scholar

[7] T. Henmi: Soil Science Plant Nutrition Vol. 33 (1987), p.517.

Google Scholar

[8] F. S. Depoi, D. Pozebon, W. D. Kalkreuth: Int. Journal Coal Geol Vol. 76 (2008), p.227.

Google Scholar

[9] C. F. Lin, H. C. Hsi: Environ. Sci. Technol Vol. 29 (1995), p.1109.

Google Scholar

[10] J. Scott, D. Guang, K. Naeramitmarnsuk, M. Thabuot, R. Amal: J. Chem. Technol. Biotechnol Vol. 77 (2001), p.63.

Google Scholar

[11] J. C. Umaña-Peña: PhD Thesis. Universitat Politécnica de Catalunya, Barcelona, Espanha (2002).

Google Scholar

[12] I. D. Fernandes, L. Ferret, C. A. Khahl, J. C. T. Endres, A. Maegawa: Crystaline microstruture modification of brazilian coal ash with alcaline solution (Proceedings of International Ash Utilization Symposium, University of Kentucky, USA, 1999).

Google Scholar

[13] K. Ojha, N. C. Pradhan, A. M. Samanta: Bull. Mater. Sci Vol. 27 (2004), p.555.

Google Scholar

[14] Z. Sarbak, A. Stanczyk, M. Kramer-Wachowiack: Powder Technol Vol. 145 (2004), p.82.

Google Scholar

[15] C. H. Giles, T. H. Macewan, S. N. Nakhua, D. Smith: J. Chem. Soc. London (1960), p.3973.

Google Scholar

[16] H. W. Sherry, in: Ion Exchange, edited by Marcel Dekker, The ion exchange properties of zeolites, chapter , 2, New York (1969).

Google Scholar

[17] S. K. Ouki, M. Kavannagh: Waste Manage. Res Vol. 15 (1997), p.383.

Google Scholar

[18] M. J. Semmens, M. Seyfarth, In: Natural zeolites: occurrence, properties, and use, edited by L. B. Sand and F. A. Mumpton, The selectivity of clinoptilolite for certain heavy metals (1981).

Google Scholar

[19] N. Ortiz: PhD Thesis. Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil (2000).

Google Scholar

[20] A. Shukla, Y. H. Zhang, P. Dubey, J. L. Margrave, S. S. Shukla: J. Hazard Mater Vol. B95 (2002), p.137.

Google Scholar