Three-Dimensional Simulation for Perikinetic Flocculation of Fine Sediment under the Ionization in Still Water

Abstract:

Article Preview

A simulation based on Brownian dynamic for perikinetic flocculation of fine sediment under the ionization is presented. The Langevin equation is used as dynamical equation for tracking each particle making up a floc. Monte Carlo method was used for simulate random variation in particle movement. An initial condition and periodic boundary condition which conformed to reality well is used for calculation. In each cell 1000 particles of 10𝝁 m, 15𝝁m, 20𝝁m, 25𝝁m, 30𝝁m in diameter were served as primary particles. Floc growth is based on the thermal force and the electrostatic force. The electrostatic force on a particle in the simulation cell is considered as a sum of the electrostatic force from other particles in the original cell. The particles are supposed to be motion with uncharged and charged state in dispersion system. A comparison of the initial flocculent time and smashing time in sludge density 1010kg/m3, 1025 kg/m3, 1050 kg/m3, 1075 kg/m3, 1100 kg/m3 were present to show the effect of it on floc growth. The increase of sludge density deferred the flocculation rate. To study morphological shape of floc, the radius of gyration was revealed under different situations. On one hand the radius of gyration presented random variation with uncharged particle, On the other hand, the radius of gyration increases gradually with the increase of polar electrical charges on primal particle. Moreover, the morphological shape for the charged floc was more open than that of unchanged state. Finally, a series of experimental results are present, which is coincide with model well.

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Edited by:

Hexing Li, Qunjie Xu and Daquan Zhang

Pages:

2282-2290

DOI:

10.4028/www.scientific.net/AMR.356-360.2282

Citation:

L. S. Liu et al., "Three-Dimensional Simulation for Perikinetic Flocculation of Fine Sediment under the Ionization in Still Water", Advanced Materials Research, Vols. 356-360, pp. 2282-2290, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.