Preparation of Polyaniline–ZnO Photocatalyst and its Photocatalytic Property

Article Preview

Abstract:

ZnO nanoparticles were modified by polyaniline (PANI) using ‘in situ’ chemical oxidative polymerization method. The morphology, structure, and light absorption properties of PANI-ZnO composites were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–vis spectra. UV–vis spectra reveal that PANI-ZnO composites showed stronger absorption than neat ZnO under the whole range of visible light. New characteristic peaks were found in PANI-ZnO composites according to the X-ray diffraction patterns after hybridization of PANI and ZnO, which indicating that there was a strong interaction between PANI and ZnO nanoparticles. The resulting PANI-ZnO composites exhibit significantly higher photocatalytic activity than that of neat ZnO for degradation of anthraquinone dye (reactive brilliant blue KN-R) aqueous solution under visible light irradiation (λ > 420 nm).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

519-523

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda: Nature Vol. 238(1972), p.37

Google Scholar

[2] Y. Ohko, K. I. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T. Iguchi, Y. Kubota and A. Fujishima: Environ. Sci. Technol. Vol. 36(2002), p.4175

DOI: 10.1021/es011500a

Google Scholar

[3] H. D. Mansilla, J. Villasenor, G. Maturana, J. Baeza, J. Freer and N. Duran: J. Photochem. Photobio. A Vol. 78 (1994), p.267

Google Scholar

[4] C. Lizama, J. Freer, J. Baeza and H. D. Mansilla: Catal. Today. Vol. 76 (2002), p.235

Google Scholar

[5] W.W. Lu, S.Y. Gao and J.J. Wang: J. Phys. Chem. C Vol.112 (2008), p.16792

Google Scholar

[6] X.Q. Qiu, G.S. Li, X.F. Sun, L.P. Li and X.Z. Fu: Nanotechnology. Vol.19 (2008), p.1

Google Scholar

[7] M.L. Zhang, T.C. An, X.H. Hu, C. Wang, G.Y. Sheng and J.M. Fu: Appl. Catal. A Vol.260 (2004), p.15

Google Scholar

[8] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger: Science. Vol.270 (1995), p.1789

Google Scholar

[9] E.T. Kang, K. G. Neoh and K. L. Tan: Prog. Polym. Sci. Vol. 23 (1998), p.277

Google Scholar

[10] M. Matsumura and T. Ohno: Adv. Mater. Vol.9 (1997), p.357

Google Scholar

[11] J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang and A. G. MacDiarmid: Macromolecules Vol.24 (1991), p.779

Google Scholar

[12] K. I. Seo and I. J. Chung: Polymer. Vol.41 (2000), p.4491

Google Scholar

[13] D. A. House: Chem. Rev. Vol.62 (1962), p.185

Google Scholar

[14] H.S. Xia and Q. Wang: Chem. Mater. Vol.14 (2002), p.2158

Google Scholar

[15] S. J. Su and N. Kuramoto: Synth. Met. Vol.114 (2000), p.147

Google Scholar

[16] H. Zhang, R.L. Zong, J.C. Zhao and Y.F. Zhu: Environ. Sci. Technol. Vol.42 (2008), p.3803

Google Scholar

[17] X.Y. Li, D.S. Wang , G.X. Cheng, Q.Z. Luo, J. An and Y.H. Wang: Appl. Catal., B Vol.81 (2008), p.267

Google Scholar