Carbon Nanotubes Based Mixed Matrix Membrane for Gas Separation

Article Preview

Abstract:

Mixed matrix membranes (MMM) combine useful molecular sieving properties of inorganic fillers with the desirable mechanical and processing properties of polymers. The current trend in polymeric membranes is the incorporation of filler-like nanoparticles to improve the separation performance. Most MMM have shown higher gas permeabilities and improved gas selectivities compared to the corresponding pure polymer membranes. Carbon nanotubes based mixed matrix membrane was prepared by the solution casting method in which the functionalized multiwalled carbon nanotubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt% on the gas separation properties were looked into. The as-prepared membranes were characterized for their morphology using field emission scanning electron microscopy (FESEM) and Transmission Electron Microscopy (TEM). The morphologies of the MMM also indicated that at 0.7 % loading of f-MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-277

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhi-Min Dang, LanWang, and Li-Pei Zhang, Surface Functionalization of Multiwalled Carbon Nanotube with Trifluorophenyl, J. Nanomater., Vol. 2006, (2006), 83583, p.1–5.

Google Scholar

[2] Han-Lang Wu, Chung-Hao Wang, Chen-Chi M. Ma, Yie-Chan Chiu, Meng-Tan Chiang, Chin-Lung Chiang, Preparations and properties of maleic acid and maleic anhydride functionalized multiwall carbon nanotube/poly(urea urethane) nanocomposites, Comp. Sci. Technol., 67, (2007).

DOI: 10.1016/j.compscitech.2006.10.028

Google Scholar

[3] Marinobu Endo, M. S. Dresselhous, Carbon fibers and carbon nanotubes, (1999), Massachusetts Institute of Technology.

Google Scholar

[4] Jae-Hyun Choi, J. Jegal and Woo-Nyon Kim, Fabrication and characterization of multi- walled carbon nanotubes/polymer blend membranes, J. Membr. Sci., 284, (2006), p.406 – 415.

DOI: 10.1016/j.memsci.2006.08.013

Google Scholar

[5] Jae-Hyun Choi, J. Jegal and Woo-Nyon Kim, Modification of Performances of Various Membranes Using MWNTs as a Modifier, Macromol Symp., 249 – 250, (2007), p.610 – 617.

DOI: 10.1002/masy.200750444

Google Scholar

[6] H. Kuzmany, A. Kukovecz, F. Simona, M. Holzweber, Ch. Kramberger , T. Pichler Functionalization of Carbon Nanotubes, Synth. Met., 141, (2004), p.113–122.

DOI: 10.1016/j.synthmet.2003.08.018

Google Scholar

[7] Ya-Ping Sun, Kefu Fu, Yi Lin and Weijie Huang, Functionalized Carbon Nanotubes: Properties and Applications, Acc. Chem. Res., (2002), 35, pp.1096-1104.

DOI: 10.1021/ar010160v

Google Scholar

[8] K. Balasubramanian and M. Burghard, Chemically Functionalized Carbon Nanotubes, Small, Vol. 1, No. 2, (2005) p.180–192.

DOI: 10.1002/smll.200400118

Google Scholar

[9] Lan Ying Jianga, Tai Shung Chung, Cyclodextrin containing Matrimid® sub-nanocomposite, membranes for pervaporation application, J. Membr. Sci., 327, (2009), p.216–225.

DOI: 10.1016/j.memsci.2008.11.036

Google Scholar

[10] Jian Chen, Mark J. Dyer, and Min-Feng Yu, Cyclodextrin-Mediated Soft Cutting of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc. (2001), 123 , pp.6201-6202.

DOI: 10.1021/ja015766t

Google Scholar

[11] S. Samal, K. E. Geckeler, Cyclodextrin-fullerenes: A new class of water-soluble fullerenes. Chem. Comm., (13), (2000), 1101-1102.

DOI: 10.1039/b000710m

Google Scholar

[12] Fubing Peng, Changlai Hu, Zhiongyi Jiang, Novel poly(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures, J. Membr. Sci., 297, (2007), pp.236-242.

DOI: 10.1016/j.memsci.2007.03.048

Google Scholar

[13] Kesong Liu, Honggang Fu, Ying Xie, Lili Zhang, Kai Pan, Wei Zhou, Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C, 112 (4) (2008), pp.951-957.

DOI: 10.1021/jp0756754

Google Scholar

[14] Lloyd M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) p.390–400.

Google Scholar

[15] P. Bernardo, E. Drioli, and G. Golemme, Membrane Gas Separation: A Review/State of the Art, Ind. Eng. Chem. Res. (2009), 48, 4638–4663.

DOI: 10.1021/ie8019032

Google Scholar

[16] David S. Sholl and J. Karl Johnson, Making High-Flux Membranes with Carbon Nanotubes, Science, (2006), Vol 312, pp.1003-1004.

DOI: 10.1126/science.1127261

Google Scholar

[17] Sangil Kim, Todd W. Pechar, Eva Marand, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation, Desalination 192 (2006), p.330–339.

DOI: 10.1016/j.desal.2005.03.098

Google Scholar

[18] Sangil Kim, Liang Chen, J. Karl Johnson, Eva Marand, Polysulfone and Functionalized Carbon Nanotube Mixed Matrix Membranes for Gas Separation: Theory and Experiment J. Membr. Sci., 294, (2007), p.147–158.

DOI: 10.1016/j.memsci.2007.02.028

Google Scholar

[19] Lu Shao, Yong-Ping Bai, Xu Huang, Ling-Hui Meng, Jun Ma, Fabrication and Characterization of Solution Cast MWNTs/PEI Nanocomposites, J. Appl. Polym. Sci., Vol. 113, (2009), 1879–1886.

DOI: 10.1002/app.30197

Google Scholar

[20] Sangil Kim, Joerg R. Jinschek, Haibin Chen, David S. Sholl, Eva Marand, Scalable Fabrication of Carbon Nanotube/Polymer Nanocomposite Membranes for High Flux Gas Transport, Nano Lett., 7 (9), (2007), 2806-2811.

DOI: 10.1021/nl071414u

Google Scholar

[21] Andrei A. Gusev and Olga Guseva, Rapid Mass Transport in Mixed Matrix Nanotube/Polymer Membranes Adv. Mater. (2007), 19, 2672–2676.

DOI: 10.1002/adma.200602018

Google Scholar

[22] H. Chen, D. S. Sholl, Predictions of Selectivity and Flux for CH4/H2 Separations Using Single walled carbon nanotubes as Membranes, J. Membr. Sci., 269, (2006), pp.152-160.

DOI: 10.1016/j.memsci.2005.06.030

Google Scholar

[23] Tee J.C., MSc Thesis, Synthesis and Characterization of Multiwalled Carbon Nanotubes on Supported Catalysts via Catalytic Chemical Vapour Deposition, (2006) Universiti Teknologi Malaysia.

Google Scholar

[24] T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review, Mater. Sci. Eng. B, 119 (2005), p.105–118.

Google Scholar

[25] Jun Qui, Guojian Wang, Caixia Zhou, Preparation and characterization of amphiphilic multi-walled carbon nanotubes, J. Nanopart. Res, (2008) 10: 659-663.

DOI: 10.1007/s11051-007-9298-3

Google Scholar

[26] H. Cong, J. Zhang, M. Radosz, Y. Shen, Carbon Nanotube composite membranes of brominated poly(2, 6-diphenyl-1, 4-phenylene oxide) for gas separation, J. Membr. Sci., 274, (2007), 177-185.

DOI: 10.1016/j.memsci.2007.02.035

Google Scholar