Butane Sensing Property of Si-ZnO Nanowires p-n Junction

Article Preview

Abstract:

The p-n junction has been formed by using p-type boron doped silicon and n-type ZnO nanowires (NWs). It was prepared by using simple vapour-transport deposition method. Gas sensing property has been examined by measuring the resistance change of the junction sample towards 1 % of butane gas at room temperature. Significant improvement of sensing behaviour was observed from the fabricated junction sample when it was compared to sample of non-p-n junction ZnO NWs. The increase in the sensitivity of the p-n junction ZnO NWs and the ability to regain the sensing power by returning back to the initial state at room temperature are useful for future sensing device with minimum power consumption. Keywords: ZnO nanowires, Si-ZnO nanowires p-n junction, room temperature sensing and butane gas

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-265

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.T. Mosley, B.C. Tofield. Hilger, Bristol, (1987).

Google Scholar

[2] H.M. Shang and G.Z. Cao. Imperial College Press Publishing, Sgp. (2007).

Google Scholar

[3] J. Xu, Y. Zhang, Y. Chen, Q. Xiang, Q. Pan, L. Shi. Mater. Sci. Eng. B Vol. 150 (2008), pp.55-60.

Google Scholar

[4] . Wan, Q.H. Li, Y.J. Chen, X.L. He, J.P. Li, C.L. Lin. Appl. Phys. Lett., Vol. 84 18, (2004), pp.3654-3656.

Google Scholar

[5] A. Kolmakov, M. Moskovits. Annu. Rev. Mater. Res. Vol. 34 (2004), pp.151-180.

Google Scholar

[6] C.F. Dee, T.Y. Tiong, M.M. Salleh, M. Yahaya & B.Y. Majlis. Proceeding of Recent Researches In Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics, (2010), pp.160-164.

Google Scholar

[7] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, J.C. Li and T. Yu. Nanotechnology Vol. 20 (2009), 085203.

DOI: 10.1088/0957-4484/20/8/085203

Google Scholar

[8] M. Law, H. Kind, B. Messer, F. Kim, P. Yang. Angew. Chem. Int. Engl. Vol. 41 (2002), pp.2405-2408.

Google Scholar

[9] S. Mridha, D. Basak. Semicond. Sci. Technol. Vol. 21 (2006), pp.928-932.

Google Scholar

[10] Z. Fan, D. Wang, P, Chang, W. Tseng, J.G. Lu. Appl. Phys. Lett. Vol. 85 (2004), pp.5923-5925.

Google Scholar

[11] Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton and J.R. LaRoche. Mater. Sci. Eng., R 47 (2004) pp.1-47.

Google Scholar

[12] S.K. Hazra and S. Basu. Sens. Actuators B Vol. 117 (2006), pp.177-182.

Google Scholar

[13] H.W. Ryu, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Hong, Y.J. Seo, D.C. Shin, J.S. Park and G.P. Choi. Sens. Actuators B Vol. 96 (2003), p.717.

Google Scholar

[14] G.S. Trivikrama Rao and D. Tarakarama Rao. Sens. Actuators B Vol. 55 (1999), p.166.

Google Scholar

[15] C.F. Dee, K.C. Aw, B. Wright, X.D. Yan, C.W. Zou, W. Gao, M.M. Salleh, B.Y. Majlis and J.D. Lee. Materials Science Forum, 663-665, (2010), pp.563-567.

DOI: 10.4028/www.scientific.net/msf.663-665.563

Google Scholar

[16] T.Y. Tiong, M. Yahaya, C.F. Dee, M.M. Salleh & B.Y. Majlis. Journal of Microengineering and Nanoelectronics Vol. 1 (2010), pp.25-28.

Google Scholar

[17] B.J. Hansen, N. Kaolin, G. Lu, L. Lin, J. Chen and X. Zhang. J. Phys. Chem. Vol. 114 (2010), pp.2440-2447.

Google Scholar

[18] A.A. Hasina. Dissertation, University of Maryland, Department of Electrical and Computer Engineering (2008), p.121.

Google Scholar

[19] M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K. J. Choi, J.H. Lee and S.H. Hong. Appl. Phys. Lett. Vol. 93 (2008), p.263103.

Google Scholar

[20] E. Comini, G. Faglia, M. Ferroni and G. Sberveglieri. Appl. Phys. A Vol. 88 (2007), pp.45-48.

Google Scholar

[21] M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi and J. -G. Park. Sens. Actuators B Vol. 138 (2009), pp.168-173.

Google Scholar

[22] L. Luo, B.D. Sosnowchik, and L.W. Lin. IEEE MEMS (2008), pp.216-219.

Google Scholar