Influence of Calcinations Temperatures on Structural and Photoluminescence Properties of ZnO Nanoparticles via Precipitation Method

Article Preview

Abstract:

Zinc oxide (ZnO) nanoparticles with spherical morphologies were successfully produced via precipitation of Zn and I2 with DEA was employed as a chelating agent. The products were further heat treated at four different calcinations temperature commences from 250 °C to 1150 °C. Studies on ZnO structural, morphologies and optical characteristic with respect to calcinations temperatures were conducted using XRD, TEM and PL spectroscopy respectively. The XRD spectra reveal hexagonal wurtzite signature along with preferred orientation growth in (101) plane. Particles size of ~ 60 nm and strong blue-violet emission peak of 417 nm (3.0 eV) has been observed for ZnO calcined at 850 C. Results reveal a close relationship between the calcinations temperature and ZnO microstructure whereas, its luminescence behaviour showing a strong depending on ZnO microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

510-514

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Anderson and G.V. d.W. Chris: Rep. Prog. Phys. Vol. 72 (2009), p.126501.

Google Scholar

[2] D. G. Thomas: J. Phys. Chem. Solids Vol. 15 (1960), pp.86-96.

Google Scholar

[3] C. Jagadish and S. J. Pearton: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, Oxford 2006).

DOI: 10.1016/b978-008044722-3/50000-2

Google Scholar

[4] A. Azam, F. Ahmed, N. Arshi, M. Chaman and A. H. Naqvi: J. Alloy Compd. Vol. 496 (2010), pp.399-402.

Google Scholar

[5] Y. Khan, S. K. Durrani, M. Mehmood, J. Ahmad, M. R. Khan and S. Firdous: Appl. Surf. Sci. Vol. 257 (2010) pp.1756-1761.

DOI: 10.1016/j.apsusc.2010.09.011

Google Scholar

[6] A. K. Zak, W. H. A. Majid, M. Darroudi and R. Yousefi: Mater. Lett. Vol. 65 (2011), pp.70-73.

Google Scholar

[7] R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga and A. C. Bose: Solid State Commun. Vol. 149 (2009), p.1919-(1923).

DOI: 10.1016/j.ssc.2009.07.043

Google Scholar

[8] R. S. Yadav, P. Mishra and A. C. Pandey: Ultrason. Sonochem. Vol. 15 (2008), pp.863-868.

Google Scholar

[9] Y. Wang, C. Zhang, S. Bi and G. Luo: Powder Technol. Vol. 202 (2010), pp.130-136.

Google Scholar

[10] J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao and B. Feng: J. Alloy Compd. Vol. 477 (2009), pp.632-635.

Google Scholar

[11] K. Thongsuriwong, P. Amornpitoksuk and S. Suwanboon: J. Phys. Chem. Solids Vol. 71 (2010) pp.730-734.

Google Scholar

[12] M. D. J. Ooi, A. A. Aziz and M. J. Abdullah: AIP Conf. Proc. Vol. 1341 (2011) pp.11-14.

Google Scholar

[13] M. Birkholz: Thin Films Analysis by X-Ray Scattering (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).

Google Scholar

[14] H. -M. Xiong: J. Mater. Chem. Vol. 20 (2010) pp.4251-4262.

Google Scholar

[15] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai: Adv. Funct. Mater. Vol . 20 (2010) pp.561-572.

Google Scholar