Study of Nano Ni/CeO2-SiO2 Catalysts for Biogas Dry Reforming

Article Preview

Abstract:

CeO2-SiO2 (C-S) Binary Oxides Were Prepared by Deposition Precipitation as Modified Support. Nanoparticle Nickel Catalysts (5 Wt.%), Supported on SiO2 and CeO2-SiO2 Were Prepared by Impregnation. Catalysts Were Identified by Several Characterizations (XRD, BET, TPR, TPD and TEM). the Analyses Showed that Nanoparticle Ni Supported on CeO2-SiO2 Catalysts Gave Better Properties in Reducibility, Basicity, Ni Metal Dispersion and Size Compared to the Nickel Catalysts Supported on the Single Oxide SiO2. the Catalytic Test of Dry Reforming of CH4 with CO2 (DRMC) Reaction Was Conducted Using Temperature Programmed Reaction (TPRn) Technique which Connected to an Online Mass Spectrometer. the Catalytic Test Showed that Ceria (CeO2) Loading Influenced the Activity, Mainly the Hydrogen Production. Ni Catalyst with 9 Wt.% of Ceria Exhibited the Highest Hydrogen Production and it Was Suggested to Be the Optimum Value of Ceria Loading. in Addition, the Lower Amount of Carbon Was Observed on the Ni/9C-S Catalyst. this Revealed that the Addition of an Appropriate Amount of Ceria Increased the Hydrogen Production and Reduced the Carbon Formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-530

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Safariamin, L.H. Tidahy, E. Abi-Aad, S. Siffert, A. Aboukaïs: Comptes Rendus Chimie 12 (2009), pp.748-753.

DOI: 10.1016/j.crci.2008.10.021

Google Scholar

[2] M. -S. Fan, A.Z. Abdullah, S. Bhatia: ChemCatChem 1 (2009), pp.192-208.

Google Scholar

[3] S. -T. Chen, H. -I. Kuo, C. -C. Chen: Applied Energy 87 (2010), pp.2517-2525.

Google Scholar

[4] J. Xu, W. Zhou, Z. Li, J. Wang, J. Ma: International Journal of Hydrogen Energy 34 (2009), pp.6646-6654.

Google Scholar

[5] M. Ni, D.Y.C. Leung, M.K.H. Leung: International Journal of Hydrogen Energy 32 (2007), pp.3238-3247.

Google Scholar

[6] I.S. Chang, J. Zhao, X. Yin, J. Wu, Z. Jia, L. Wang: Renewable and Sustainable Energy Reviews 15 (2011), pp.1442-1453.

Google Scholar

[7] T. Gundersen, A. Aspelund, Design for Energy and the Environment, CRC Press, 2009, pp.273-280.

Google Scholar

[8] A. Midilli, I. Dincer, M. Ay: Energy Policy 34 (2006), pp.3623-3633.

DOI: 10.1016/j.enpol.2005.08.003

Google Scholar

[9] Y.N. Chun, Y.C. Yang, K. Yoshikawa: Catalysis Today 148 (2009), pp.283-289.

Google Scholar

[10] S. Corthals, J. Van Nederkassel, J. Geboers, H. De Winne: J. Van Noyen, B. Moens, B. Sels, P. Jacobs, Catalysis Today 138 (2008), pp.28-32.

DOI: 10.1016/j.cattod.2008.04.038

Google Scholar

[11] J.C.S. Wu, H. -C. Chou: Chemical Engineering Journal 148 (2009), pp.539-545.

Google Scholar

[12] K. Asami, X. Li, K. Fujimoto, Y. Koyama, A. Sakurama, N. Kometani, Y. Yonezawa: Catalysis Today 84 (2003), pp.27-31.

DOI: 10.1016/s0920-5861(03)00297-9

Google Scholar

[13] M.E. Rivas, J.L.G. Fierro, M.R. Goldwasser, E. Pietri, M.J. Pérez-Zurita, A. Griboval-Constant, G. Leclercq: Applied Catalysis A: General 344 (2008), pp.10-19.

DOI: 10.1016/j.apcata.2008.03.023

Google Scholar

[14] D. San-José-Alonso, J. Juan-Juan, M.J. Illán-Gómez, M.C. Román-Martínez: Applied Catalysis A: General 371 (2009), pp.54-59.

DOI: 10.1016/j.apcata.2009.09.026

Google Scholar

[15] A.E. Castro Luna, M.E. Iriarte: Applied Catalysis A: General 343 (2008), pp.10-15.

Google Scholar

[16] S. Wang, G.Q. Lu: Applied Catalysis B: Environmental 19 (1998), pp.267-277.

Google Scholar

[17] J. Li, Y. Hao, H. Li, M. Xia, X. Sun, L. Wang: Microporous and Mesoporous Materials 120 (2009), pp.421-425.

Google Scholar

[18] A. Kambolis, H. Matralis, A. Trovarelli, C. Papadopoulou: Applied Catalysis A: General 377 (2010), pp.16-26.

DOI: 10.1016/j.apcata.2010.01.013

Google Scholar

[19] L. An, T.S. Zhao, S.Y. Shen, Q.X. Wu, R. Chen: Journal of Power Sources 196 (2011), pp.186-190.

Google Scholar

[20] H. Fajardo, L. Probst, N. Carreño, I. Garcia, A. Valentini: Catalysis Letters 119 (2007), pp.228-236.

Google Scholar

[21] H. -S. Roh, H.S. Potdar, K. -W. Jun: Catalysis Today 93-95 (2004), pp.39-44.

Google Scholar

[22] J. Seo, M. Youn, I. Nam, S. Hwang, J. Chung, I. Song, Catalysis Letters 130 (2009) 410-416.

Google Scholar

[23] Q. Jing, H. Lou, J. Fei, Z. Hou, X. Zheng: International Journal of Hydrogen Energy 29 (2004), pp.1245-1251.

Google Scholar

[24] J. Gao, J. Guo, D. Liang, Z. Hou, J. Fei, X. Zheng: International Journal of Hydrogen Energy 33 (2008), pp.5493-5500.

Google Scholar