[1]
B. Herna ndez-Ledesma, A. Quiro s, L. Amigo, and I. Recio, Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin, Int. Dairy J., vol. 17, pp.42-49, (2007).
DOI: 10.1016/j.idairyj.2005.12.012
Google Scholar
[2]
Y. Ma, Y. L. Xiong, J. Zhai, H. Zhu, and T. Dziubla, Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein, Food Chem., vol. 118, pp.582-588, (2010).
DOI: 10.1016/j.foodchem.2009.05.024
Google Scholar
[3]
S. V. Silva, A. Pihlanto and F. X. Malcata, Bioactive Peptides in Ovine and Caprine Cheeselike Systems Prepared with Proteases from Cynara cardunculus, J. Dairy Sci., vol. 89, pp.3336-3344, 2006-09-01 (2006).
DOI: 10.3168/jds.s0022-0302(06)72370-0
Google Scholar
[4]
K. Suetsuna, H. Ukeda and O. Hirotomo, Isolation and characterization of free radical scavenging activities peptides derived from casein, J. Nutr. Biochem., vol. 11, p.128 –131, (2000).
DOI: 10.1016/s0955-2863(99)00083-2
Google Scholar
[5]
R. R. Lu, P. Qian, Z. Sun, X. H. Zhou, T. P. Chen, J. F. He, H. Zhang, and J. Wu, Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells, Food Chem., vol. 123, pp.1210-1218, (2010).
DOI: 10.1016/j.foodchem.2010.05.089
Google Scholar
[6]
I. C. Sheih, T. Wu and T. J. Fang, Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems, Bioresour. Technol., vol. 100, pp.3419-3425, (2009).
DOI: 10.1016/j.biortech.2009.02.014
Google Scholar
[7]
E. MENDIS, N. RAJAPAKSE and S. KIM, Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate, J. Agric. Food Chem., vol. 53, pp.581-587, (2005).
DOI: 10.1021/jf048877v
Google Scholar
[8]
S. Kim, J. Je and S. Kim, Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion, J. Nut. Biochem., vol. 18, pp.31-38, (2007).
DOI: 10.1016/j.jnutbio.2006.02.006
Google Scholar
[9]
N. Rajapaksea, E. Mendisa, H. Byunb, and S. Kim, Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems, J. Nutr. Biochem., vol. 16, pp.562-569, (2005).
DOI: 10.1016/j.jnutbio.2005.02.005
Google Scholar
[10]
E. Kim, S. Lee, B. Jeon, S. Moon, B. Kim, T. Park, J. Han, and P. Park, Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein, Food Chem., vol. 114, pp.1365-1370, (2009).
DOI: 10.1016/j.foodchem.2008.11.035
Google Scholar
[11]
Jae-Young Je, Zhong-Ji Qian, Sang-Hoon Lee, Hee-Guk Byun, and A. S. Kim, Purification and Antioxidant Properties of Bigeye Tuna (Thunnus obesus) Dark Muscle Peptide on Free Radical-Mediated Oxidative Systems, J. Med. Food., vol. 11, p.629–637, (2008).
DOI: 10.1089/jmf.2007.0114
Google Scholar
[12]
R. Marcuse, Antioxidative effect of amino-acids, Nature, vol. 186, pp.886-887, (1960).
DOI: 10.1038/186886a0
Google Scholar
[13]
H. Chen, K. Muramoto, F. Yamauchi, and K. Nokihara, Antioxidant Activity of Designed Peptides Based on the Antioxidative Peptide Isolated from Digests of a Soybean Protein, J. Agric. Food Chem., vol. 44, pp.2619-2623, (1996).
DOI: 10.1021/jf950833m
Google Scholar
[14]
H. Chen, K. Muramoto and F. Yamauchi, Structural Analysis of Antioxidative Peptides from Soybean . beta. -Conglycinin, J. Agric. Food Chem., vol. 43, pp.574-578, (1995).
DOI: 10.1021/jf00051a004
Google Scholar
[15]
A. Saiga, S. Tanabe and T. Nishimura, Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment, J. Agric. Food Chem., vol. 51, p.3661−3667, (2003).
DOI: 10.1021/jf021156g
Google Scholar
[16]
C. Hansch and A. Leo, Exploring QSAR: fundamentals and application in chemistry and biology. Washington DC: American Chemical Society, (1995).
Google Scholar
[17]
A. H. Pripp, T. Isaksson, L. Stepaniak, and T. Sørhaug, Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins, Eur. Food Res. Technol., vol. 219, pp.579-583, (2004).
DOI: 10.1007/s00217-004-1004-4
Google Scholar
[18]
A. H. Pripp and Y. Ardo, Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides, Food Chem., vol. 102, pp.880-888, (2007).
DOI: 10.1016/j.foodchem.2006.06.026
Google Scholar
[19]
R. D. Brown, Descriptors for diversity analysis, Perspect. Drug Discov. Design, vol. 7-8, pp.31-49, (1997).
Google Scholar
[20]
P. H. A. Sneath, Relations between chemical structure and biological activity in peptides, J. Theor. Biol., vol. 12, pp.157-195, (1966).
Google Scholar
[21]
A. Kidera, Y. Konishi, M. Oka, T. Ooi, and H. A. Scheraga, Statistical analysis of the physical properties of the 20 naturally occurring amino acids, J. Protein Chem., vol. 4, pp.23-55, (1985).
DOI: 10.1007/bf01025492
Google Scholar
[22]
S. Hellberg, M. Sjoestroem, B. Skagerberg, and S. Wold, Peptide quantitative structure-activity relationships, a multivariate approach, J. Med. Chem., vol. 30, pp.1126-1135, 2002-05-01 (1987).
DOI: 10.1021/jm00390a003
Google Scholar
[23]
J. Wu and R. E. Aluko, Quantitative structure-activity relationship study of bitter di- and tri-peptides including relationship with angiotensin I-converting enzyme inhibitory activity, J. Pept. Sci., vol. 13, pp.63-69, (2007).
DOI: 10.1002/psc.800
Google Scholar
[24]
H. Kim and E. C. Y. Li-Chan, Quantitative Structure−Activity Relationship Study of Bitter Peptides, J. Agric. Food Chem., vol. 54, pp.10102-10111, 2006-11-22 (2006).
DOI: 10.1021/jf062422j
Google Scholar
[25]
M. Sandberg, L. Eriksson, J. Jonsson, M. Sjöström, and S. Wold, New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids, J. Med. Chem., vol. 41, pp.2481-2491, (1998).
DOI: 10.1021/jm9700575
Google Scholar
[26]
H. Mei, Z. H. Liao, Y. Zhou, and S. Z. Li, A New Set of Amino Acid Descriptors and Its Application in Peptide QSARs, Pept. Sci., vol. 80, p.775–786, (2005).
DOI: 10.1002/bip.20296
Google Scholar
[27]
F. Tian, L. Yang, F. Lv, Q. Yang, and P. Zhou, In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure–activity relationship approach, Amino Acids, vol. 36, pp.535-554, (2009).
DOI: 10.1007/s00726-008-0116-8
Google Scholar
[28]
F. Tian, P. Zhou and Z. Li, T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides, J. Mol. Struct., vol. 830, pp.106-115, (2007).
DOI: 10.1016/j.molstruc.2006.07.004
Google Scholar
[29]
M. Shu, H. Mei, S. Yang, L. Liao, and Z. Li, Structural Parameter Characterization and Bioactivity Simulation Based on Peptide Sequence, QSAR & Comb. Sci., vol. 28, pp.27-35, (2009).
DOI: 10.1002/qsar.200710169
Google Scholar
[30]
S. Z. Li, B. Fu, Yuanqiang, and S. Liu, On Structural Parameterization and Molecular Modeling of Peptide Analogues by Molecular Electronegativity Edge Vector (VMEE): Estimation and Prediction for Biological Activity of Dipeptides, J. Chin. Chem. Soc., vol. 48, pp.937-944, (2001).
DOI: 10.1002/jccs.200100137
Google Scholar
[31]
H. Mei, Y. Zhou, L. L. Sun, and Z. L. Li, A new descriptor of amino acids and its application in peptide QSAR, Acta Phys. Chim. Sin., vol. 20, pp.821-825, (2004).
Google Scholar
[32]
G. Z. Liang, P. Zhou, Y. Zhou, Q. X. Zhang, and Z. L. Li, New descriptors of aminoacids and their applications to peptide quantitative structure-activity relationship, Acta Chim. Sinica, vol. 64, pp.393-396, (2006).
Google Scholar
[33]
G. Liang and Z. Li, Factor Analysis Scale of Generalized Amino Acid Information as the Source of a New Set of Descriptors for Elucidating the Structure and Activity Relationships of Cationic Antimicrobial Peptides, QSAR & Comb. Sci., vol. 26, pp.754-763, (2007).
DOI: 10.1002/qsar.200630145
Google Scholar
[34]
L. Yang, M. Shu, K. Ma, H. Mei, Y. Jiang, and Z. Li, ST-scale as a novel amino acid descriptor and its application in QSAM of peptides and analogues, Amino Acids, vol. 38, pp.805-816, (2010).
DOI: 10.1007/s00726-009-0287-y
Google Scholar
[35]
Z. Li, G. Li, M. Shu, J. Sun, S. Yang, H. Mei, M. Zhang, P. Zhou, S. Wu, G. Chen, F. Lu, and T. Lu, A novel vector of topological and structural information for amino acids and its QSAR applications for peptides and analogues, Sci. China Ser. B, vol. 51, pp.946-957, (2008).
DOI: 10.1007/s11426-008-0040-5
Google Scholar
[36]
Z. Lin, H. Long, Z. Bo, Y. Wang, and Y. Wu, New descriptors of amino acids and their application to peptide QSAR study, Peptides, vol. 29, pp.1798-1805, (2008).
DOI: 10.1016/j.peptides.2008.06.004
Google Scholar
[37]
J. B. TONG, S. L. Liu, Y. T. Liu, Y. M. Ma, and X. M. Tong, A New SVG descriptor of amino acids and its application to peptide QSAR, Fines chem., vol. 25, (2008).
Google Scholar
[38]
J. Tong, S. Liu, P. Zhou, B. Wu, and Z. Li, A novel descriptor of amino acids and its application in peptide QSAR, J. Theor. Biol., vol. 253, pp.90-97, (2008).
DOI: 10.1016/j.jtbi.2008.02.030
Google Scholar
[39]
E. R. Collantes and W. J. Dunn III, Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogues, J. Med. Chem., vol. 38, pp.2705-2713, (1995).
DOI: 10.1021/jm00014a022
Google Scholar
[40]
G. Bravi, E. Gancia, P. Mascagni, M. Pegna, R. Todeschini, and A. Zaliani, MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids, J. Comput. Aid. Molec. Design, vol. 11, pp.79-92, (1997).
DOI: 10.1023/a:1008079512289
Google Scholar
[41]
J. B. Z. S. Tong, A new 3D-descriptor of amino acids and its application in quantitative structure activity relationship of peptide drugs, Wuli Huaxue Xuebao/ Acta Phys. Chim. Sinica, vol. 23, pp.37-43, (2007).
Google Scholar
[42]
J. J. D. X. Ding, New 3D amino acid structure descriptors and its application to the polypeptide QSAR, Yaoxue Xuebao, vol. 40, pp.340-346, (2005).
Google Scholar
[43]
B. Hernández-Ledesma, A. Dávalos, B. Bartolomé, and L. Amigo, Preparation of Antioxidant Enzymatic Hydrolysates from a-Lactalbumin and b-Lactoglobulin. Identification of Active Peptides by HPLC-MSMS, J. Agric. Food Chem., vol. 53, p.588−593, (2005).
DOI: 10.1021/jf048626m
Google Scholar
[44]
B. Hernandez-Ledesma, L. Amigo, I. Recio, and B. Bartolome, ACE-Inhibitory and Radical-Scavenging Activity of Peptides Derived from β-Lactoglobulin f(19−25). Interactions with Ascorbic Acid, J. Agric. Food Chem. vol. 55, pp.3392-3397, 2007-04-06 (2007).
DOI: 10.1021/jf063427j
Google Scholar
[45]
G. Shen, B. Chahal, K. Majumder, S. J. You, and J. Wu, Identification of novel antioxidative peptides derived from a thermolytic Hydrolysate of ovotransferrin by LC-MS/MS, J. Agric. Food Chem., vol. 58, pp.7664-7672, (2010).
DOI: 10.1021/jf101323y
Google Scholar
[46]
E. R. Collantes and W. J. Dunn, Amino Acid Side Chain Descriptors for Quantitative Structure-Activity Relationship Studies of Peptide Analogs, J. Med. Chem., vol. 38, pp.2705-2713, 1995-07-01 (1995).
DOI: 10.1021/jm00014a022
Google Scholar
[47]
S. Wold, M. Sjöström and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemometr. Intell. Lab. Syst, vol. 58, pp.109-130, (2001).
DOI: 10.1016/s0169-7439(01)00155-1
Google Scholar
[48]
S. Wold, J. Trygg, A. Berglund, and H. Antti, Some recent developments in PLS modeling, Chemometr. Intell. Lab. Syst., vol. 58, pp.131-150, (2001).
DOI: 10.1016/s0169-7439(01)00156-3
Google Scholar
[49]
N. D. Tracy, J. C. Young and R. L. Mason, Multivariate Control Charts for Individual Observations, J. Qual. Technol., vol. 24, pp.88-95, (1992).
Google Scholar
[50]
R. Topp and G. Gómez, Residual analysis in linear regression models with an interval-censored covariate, Stat. Med., vol. 23, pp.3377-3391, (2004).
DOI: 10.1002/sim.1731
Google Scholar
[51]
R. D. M. Y. Brown, The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding, Journal of Chemical Information and Computer Sciences, vol. 37, pp.1-9, (1997).
DOI: 10.1021/ci960373c
Google Scholar
[52]
D. J. B. C. Wild, Comparison of 2D Fingerprint Types and Hierarchy Level Selection Methods for Structural Grouping Using Ward's Clustering, J. Chem. Inform. Comput. Sci., vol. 40, pp.155-162, (2000).
DOI: 10.1021/ci990086j
Google Scholar
[53]
W. Jung, N. Rajapakse and S. Kim, Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytilus edulis, Eur. Food Res. Technol., vol. 220, pp.535-539, (2005).
DOI: 10.1007/s00217-004-1074-3
Google Scholar