Quantitative Structure-Activity Relationship Study of Radical Scavenging Peptides Based on Orac Method by Using Different Sets of Amino Acids Descriptor

Article Preview

Abstract:

Some radical scavenging peptides by ORAC method from different hydrolysates were used for the quantitative structure-activity relationships (QSAR) research. Partial least-squares regression analysis (PLSR) was treated as the method to build the model with 17 kinds of amino acid descriptors. In order to translate the sequence to the same length, two-terminal position numbering (TTPN) was applied. Two of amino acid descriptors VSHE and VSW were selected for their excellent performance (R2, Q2, and RMSEc with VHSE and VSW descriptor are 0.995, 0.630, 0.318 and 0.966, 0.543, 0.181 respectively). VHSE has the definite physicochemical meanings and easy to understand while VSW has good predictive ability (Rand RMSEp with VHSE and VSW are 0.404, 2.633 and 0.635, 2.298 respectively). It is believed that the position No.2 amino acid from N-terminal (N2) have more importance than others in sequence, and most of electronic properties are negative to activity while all the steric properties are positive to activity as well as the hydrophobic properties. The suitable amino acids in sequence are as follow: G, R, K, W, Y, N, E, H, and Q are suitable for N2 position which illustrated the importance of acidic amino acids in peptide sequence for radical scavenging activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-179

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Herna ndez-Ledesma, A. Quiro s, L. Amigo, and I. Recio, Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin, Int. Dairy J., vol. 17, pp.42-49, (2007).

DOI: 10.1016/j.idairyj.2005.12.012

Google Scholar

[2] Y. Ma, Y. L. Xiong, J. Zhai, H. Zhu, and T. Dziubla, Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein, Food Chem., vol. 118, pp.582-588, (2010).

DOI: 10.1016/j.foodchem.2009.05.024

Google Scholar

[3] S. V. Silva, A. Pihlanto and F. X. Malcata, Bioactive Peptides in Ovine and Caprine Cheeselike Systems Prepared with Proteases from Cynara cardunculus, J. Dairy Sci., vol. 89, pp.3336-3344, 2006-09-01 (2006).

DOI: 10.3168/jds.s0022-0302(06)72370-0

Google Scholar

[4] K. Suetsuna, H. Ukeda and O. Hirotomo, Isolation and characterization of free radical scavenging activities peptides derived from casein, J. Nutr. Biochem., vol. 11, p.128 –131, (2000).

DOI: 10.1016/s0955-2863(99)00083-2

Google Scholar

[5] R. R. Lu, P. Qian, Z. Sun, X. H. Zhou, T. P. Chen, J. F. He, H. Zhang, and J. Wu, Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells, Food Chem., vol. 123, pp.1210-1218, (2010).

DOI: 10.1016/j.foodchem.2010.05.089

Google Scholar

[6] I. C. Sheih, T. Wu and T. J. Fang, Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems, Bioresour. Technol., vol. 100, pp.3419-3425, (2009).

DOI: 10.1016/j.biortech.2009.02.014

Google Scholar

[7] E. MENDIS, N. RAJAPAKSE and S. KIM, Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate, J. Agric. Food Chem., vol. 53, pp.581-587, (2005).

DOI: 10.1021/jf048877v

Google Scholar

[8] S. Kim, J. Je and S. Kim, Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion, J. Nut. Biochem., vol. 18, pp.31-38, (2007).

DOI: 10.1016/j.jnutbio.2006.02.006

Google Scholar

[9] N. Rajapaksea, E. Mendisa, H. Byunb, and S. Kim, Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems, J. Nutr. Biochem., vol. 16, pp.562-569, (2005).

DOI: 10.1016/j.jnutbio.2005.02.005

Google Scholar

[10] E. Kim, S. Lee, B. Jeon, S. Moon, B. Kim, T. Park, J. Han, and P. Park, Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein, Food Chem., vol. 114, pp.1365-1370, (2009).

DOI: 10.1016/j.foodchem.2008.11.035

Google Scholar

[11] Jae-Young Je, Zhong-Ji Qian, Sang-Hoon Lee, Hee-Guk Byun, and A. S. Kim, Purification and Antioxidant Properties of Bigeye Tuna (Thunnus obesus) Dark Muscle Peptide on Free Radical-Mediated Oxidative Systems, J. Med. Food., vol. 11, p.629–637, (2008).

DOI: 10.1089/jmf.2007.0114

Google Scholar

[12] R. Marcuse, Antioxidative effect of amino-acids, Nature, vol. 186, pp.886-887, (1960).

DOI: 10.1038/186886a0

Google Scholar

[13] H. Chen, K. Muramoto, F. Yamauchi, and K. Nokihara, Antioxidant Activity of Designed Peptides Based on the Antioxidative Peptide Isolated from Digests of a Soybean Protein, J. Agric. Food Chem., vol. 44, pp.2619-2623, (1996).

DOI: 10.1021/jf950833m

Google Scholar

[14] H. Chen, K. Muramoto and F. Yamauchi, Structural Analysis of Antioxidative Peptides from Soybean . beta. -Conglycinin, J. Agric. Food Chem., vol. 43, pp.574-578, (1995).

DOI: 10.1021/jf00051a004

Google Scholar

[15] A. Saiga, S. Tanabe and T. Nishimura, Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment, J. Agric. Food Chem., vol. 51, p.3661−3667, (2003).

DOI: 10.1021/jf021156g

Google Scholar

[16] C. Hansch and A. Leo, Exploring QSAR: fundamentals and application in chemistry and biology. Washington DC: American Chemical Society, (1995).

Google Scholar

[17] A. H. Pripp, T. Isaksson, L. Stepaniak, and T. Sørhaug, Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins, Eur. Food Res. Technol., vol. 219, pp.579-583, (2004).

DOI: 10.1007/s00217-004-1004-4

Google Scholar

[18] A. H. Pripp and Y. Ardo, Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides, Food Chem., vol. 102, pp.880-888, (2007).

DOI: 10.1016/j.foodchem.2006.06.026

Google Scholar

[19] R. D. Brown, Descriptors for diversity analysis, Perspect. Drug Discov. Design, vol. 7-8, pp.31-49, (1997).

Google Scholar

[20] P. H. A. Sneath, Relations between chemical structure and biological activity in peptides, J. Theor. Biol., vol. 12, pp.157-195, (1966).

Google Scholar

[21] A. Kidera, Y. Konishi, M. Oka, T. Ooi, and H. A. Scheraga, Statistical analysis of the physical properties of the 20 naturally occurring amino acids, J. Protein Chem., vol. 4, pp.23-55, (1985).

DOI: 10.1007/bf01025492

Google Scholar

[22] S. Hellberg, M. Sjoestroem, B. Skagerberg, and S. Wold, Peptide quantitative structure-activity relationships, a multivariate approach, J. Med. Chem., vol. 30, pp.1126-1135, 2002-05-01 (1987).

DOI: 10.1021/jm00390a003

Google Scholar

[23] J. Wu and R. E. Aluko, Quantitative structure-activity relationship study of bitter di- and tri-peptides including relationship with angiotensin I-converting enzyme inhibitory activity, J. Pept. Sci., vol. 13, pp.63-69, (2007).

DOI: 10.1002/psc.800

Google Scholar

[24] H. Kim and E. C. Y. Li-Chan, Quantitative Structure−Activity Relationship Study of Bitter Peptides, J. Agric. Food Chem., vol. 54, pp.10102-10111, 2006-11-22 (2006).

DOI: 10.1021/jf062422j

Google Scholar

[25] M. Sandberg, L. Eriksson, J. Jonsson, M. Sjöström, and S. Wold, New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids, J. Med. Chem., vol. 41, pp.2481-2491, (1998).

DOI: 10.1021/jm9700575

Google Scholar

[26] H. Mei, Z. H. Liao, Y. Zhou, and S. Z. Li, A New Set of Amino Acid Descriptors and Its Application in Peptide QSARs, Pept. Sci., vol. 80, p.775–786, (2005).

DOI: 10.1002/bip.20296

Google Scholar

[27] F. Tian, L. Yang, F. Lv, Q. Yang, and P. Zhou, In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure–activity relationship approach, Amino Acids, vol. 36, pp.535-554, (2009).

DOI: 10.1007/s00726-008-0116-8

Google Scholar

[28] F. Tian, P. Zhou and Z. Li, T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides, J. Mol. Struct., vol. 830, pp.106-115, (2007).

DOI: 10.1016/j.molstruc.2006.07.004

Google Scholar

[29] M. Shu, H. Mei, S. Yang, L. Liao, and Z. Li, Structural Parameter Characterization and Bioactivity Simulation Based on Peptide Sequence, QSAR & Comb. Sci., vol. 28, pp.27-35, (2009).

DOI: 10.1002/qsar.200710169

Google Scholar

[30] S. Z. Li, B. Fu, Yuanqiang, and S. Liu, On Structural Parameterization and Molecular Modeling of Peptide Analogues by Molecular Electronegativity Edge Vector (VMEE): Estimation and Prediction for Biological Activity of Dipeptides, J. Chin. Chem. Soc., vol. 48, pp.937-944, (2001).

DOI: 10.1002/jccs.200100137

Google Scholar

[31] H. Mei, Y. Zhou, L. L. Sun, and Z. L. Li, A new descriptor of amino acids and its application in peptide QSAR, Acta Phys. Chim. Sin., vol. 20, pp.821-825, (2004).

Google Scholar

[32] G. Z. Liang, P. Zhou, Y. Zhou, Q. X. Zhang, and Z. L. Li, New descriptors of aminoacids and their applications to peptide quantitative structure-activity relationship, Acta Chim. Sinica, vol. 64, pp.393-396, (2006).

Google Scholar

[33] G. Liang and Z. Li, Factor Analysis Scale of Generalized Amino Acid Information as the Source of a New Set of Descriptors for Elucidating the Structure and Activity Relationships of Cationic Antimicrobial Peptides, QSAR & Comb. Sci., vol. 26, pp.754-763, (2007).

DOI: 10.1002/qsar.200630145

Google Scholar

[34] L. Yang, M. Shu, K. Ma, H. Mei, Y. Jiang, and Z. Li, ST-scale as a novel amino acid descriptor and its application in QSAM of peptides and analogues, Amino Acids, vol. 38, pp.805-816, (2010).

DOI: 10.1007/s00726-009-0287-y

Google Scholar

[35] Z. Li, G. Li, M. Shu, J. Sun, S. Yang, H. Mei, M. Zhang, P. Zhou, S. Wu, G. Chen, F. Lu, and T. Lu, A novel vector of topological and structural information for amino acids and its QSAR applications for peptides and analogues, Sci. China Ser. B, vol. 51, pp.946-957, (2008).

DOI: 10.1007/s11426-008-0040-5

Google Scholar

[36] Z. Lin, H. Long, Z. Bo, Y. Wang, and Y. Wu, New descriptors of amino acids and their application to peptide QSAR study, Peptides, vol. 29, pp.1798-1805, (2008).

DOI: 10.1016/j.peptides.2008.06.004

Google Scholar

[37] J. B. TONG, S. L. Liu, Y. T. Liu, Y. M. Ma, and X. M. Tong, A New SVG descriptor of amino acids and its application to peptide QSAR, Fines chem., vol. 25, (2008).

Google Scholar

[38] J. Tong, S. Liu, P. Zhou, B. Wu, and Z. Li, A novel descriptor of amino acids and its application in peptide QSAR, J. Theor. Biol., vol. 253, pp.90-97, (2008).

DOI: 10.1016/j.jtbi.2008.02.030

Google Scholar

[39] E. R. Collantes and W. J. Dunn III, Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogues, J. Med. Chem., vol. 38, pp.2705-2713, (1995).

DOI: 10.1021/jm00014a022

Google Scholar

[40] G. Bravi, E. Gancia, P. Mascagni, M. Pegna, R. Todeschini, and A. Zaliani, MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids, J. Comput. Aid. Molec. Design, vol. 11, pp.79-92, (1997).

DOI: 10.1023/a:1008079512289

Google Scholar

[41] J. B. Z. S. Tong, A new 3D-descriptor of amino acids and its application in quantitative structure activity relationship of peptide drugs, Wuli Huaxue Xuebao/ Acta Phys. Chim. Sinica, vol. 23, pp.37-43, (2007).

Google Scholar

[42] J. J. D. X. Ding, New 3D amino acid structure descriptors and its application to the polypeptide QSAR, Yaoxue Xuebao, vol. 40, pp.340-346, (2005).

Google Scholar

[43] B. Hernández-Ledesma, A. Dávalos, B. Bartolomé, and L. Amigo, Preparation of Antioxidant Enzymatic Hydrolysates from a-Lactalbumin and b-Lactoglobulin. Identification of Active Peptides by HPLC-MSMS, J. Agric. Food Chem., vol. 53, p.588−593, (2005).

DOI: 10.1021/jf048626m

Google Scholar

[44] B. Hernandez-Ledesma, L. Amigo, I. Recio, and B. Bartolome, ACE-Inhibitory and Radical-Scavenging Activity of Peptides Derived from β-Lactoglobulin f(19−25). Interactions with Ascorbic Acid, J. Agric. Food Chem. vol. 55, pp.3392-3397, 2007-04-06 (2007).

DOI: 10.1021/jf063427j

Google Scholar

[45] G. Shen, B. Chahal, K. Majumder, S. J. You, and J. Wu, Identification of novel antioxidative peptides derived from a thermolytic Hydrolysate of ovotransferrin by LC-MS/MS, J. Agric. Food Chem., vol. 58, pp.7664-7672, (2010).

DOI: 10.1021/jf101323y

Google Scholar

[46] E. R. Collantes and W. J. Dunn, Amino Acid Side Chain Descriptors for Quantitative Structure-Activity Relationship Studies of Peptide Analogs, J. Med. Chem., vol. 38, pp.2705-2713, 1995-07-01 (1995).

DOI: 10.1021/jm00014a022

Google Scholar

[47] S. Wold, M. Sjöström and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemometr. Intell. Lab. Syst, vol. 58, pp.109-130, (2001).

DOI: 10.1016/s0169-7439(01)00155-1

Google Scholar

[48] S. Wold, J. Trygg, A. Berglund, and H. Antti, Some recent developments in PLS modeling, Chemometr. Intell. Lab. Syst., vol. 58, pp.131-150, (2001).

DOI: 10.1016/s0169-7439(01)00156-3

Google Scholar

[49] N. D. Tracy, J. C. Young and R. L. Mason, Multivariate Control Charts for Individual Observations, J. Qual. Technol., vol. 24, pp.88-95, (1992).

Google Scholar

[50] R. Topp and G. Gómez, Residual analysis in linear regression models with an interval-censored covariate, Stat. Med., vol. 23, pp.3377-3391, (2004).

DOI: 10.1002/sim.1731

Google Scholar

[51] R. D. M. Y. Brown, The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding, Journal of Chemical Information and Computer Sciences, vol. 37, pp.1-9, (1997).

DOI: 10.1021/ci960373c

Google Scholar

[52] D. J. B. C. Wild, Comparison of 2D Fingerprint Types and Hierarchy Level Selection Methods for Structural Grouping Using Ward's Clustering, J. Chem. Inform. Comput. Sci., vol. 40, pp.155-162, (2000).

DOI: 10.1021/ci990086j

Google Scholar

[53] W. Jung, N. Rajapakse and S. Kim, Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytilus edulis, Eur. Food Res. Technol., vol. 220, pp.535-539, (2005).

DOI: 10.1007/s00217-004-1074-3

Google Scholar