Near-Infrared Quantum Cutting Nanophosphors for Solar Cells

Article Preview

Abstract:

An efficient near-infrared (NIR) quantum cutting (QC) nanophospors with Ce3+, Yb3+ codoped in CaF2 had been synthesized by hydrothermal method and characterized by X-ray powder diffraction, scanning electron microscope, transmission electron microscopy, photoluminescence spectra and decay dynamics. The nanoparticles were uniform and monodisperse. Under the excitation of 5d level of Ce3+, an intense NIR emission at 900-1050nm was observed which match to the energy of Si band gap of Si - based solar cells. In the Ce3+, Yb3+ codoped CaF2, the lifetime of Ce3+ decreases Superscript textand the quantum efficiency (QE) increases with increasing Yb3+ concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-176

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Meijer, L. Aarts, B.M. van der Ende, T.J.H. Vlugt, A. Meijerink, Phys. Rev. B, 81 (2010), 035107.

Google Scholar

[2] L. Aarts, B.M. van der Ende, A. Meijerink, J. Appl. Phys. 106 (2009), 023522.

Google Scholar

[3] Q.Y. Zhang, C.H. Yang, Z.H. Jiang, Appl. Phys. Lett. 91 (2007), 051903.

Google Scholar

[4] Q.Y. Zhang, X.F. Liang, J. Soc. Inform. Display, 16 (2008), 755.

Google Scholar

[5] P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. den Hertog, J.P.J.M. van der Eerden, A. Meijerink, Phys. Rev. B, 71 (2005), 014119.

Google Scholar

[6] B.S. Richards, A. Shalav, Synth. Metal. 154 (2005), 61.

Google Scholar

[7] B.S. Richards, Solar Energy Mater. Solar Cells, 90 (2006), 1189.

Google Scholar

[8] X.Y. Huang, Q.Y. Zhang, J. Appl. Phys. 105 (2009), 053521.

Google Scholar

[9] J.D. Chen, H. Guo, Z.Q. Li, H. Zhang, Y.X. Zhuang, Opt. Mater. 32 (2010), 998.

Google Scholar

[10] J. Ueda, S. Tanabe, J. Appl. Phys. 106 (2009), 043101.

Google Scholar

[11] B.M. van der Ende, L. Aarts, A. Meijerink, Adv. Mater. 21 (2009), 3073.

Google Scholar

[12] J.J. Eilers, D. Biner, J.T. van Wijngaarden, K. Krämer, H U. Güdel, A. Meijerink, Appl. Phys. Lett. 96 (2010), 151106.

DOI: 10.1063/1.3377909

Google Scholar

[13] D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, Opt. Mater. 33 (2011), 1028-1031.

DOI: 10.1016/j.optmat.2010.07.023

Google Scholar

[14] H. Lin, S.M. Zhou, H. Teng, Y.K. Li, W.J. Li, X.R. Hou, T.T. Jia, J. Appl. Phys., 107 ( 2010), 043107.

Google Scholar

[15] D.Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, F. Y. Weng, J. Appl. Phys. 104 (2008), 116105.

Google Scholar

[16] E. van der Kolk, O.M. Ten Kate, J.W. Wiegma, D. Biner, K.W. Krämer, Opt. Mater. 33 (2011), 1024-1027.

Google Scholar