[1]
R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to nonspherical stars. Monthly Notices Royal astron. Soc. 181 (1977) 375-389.
DOI: 10.1093/mnras/181.3.375
Google Scholar
[2]
L.M. Watson, M.R. Scott, Solving spline-collocation approximations to nonlinear two-point boundary-value problems by a homotopy method. Appl. Math. Comput. 24 (1987) 333-357.
DOI: 10.1016/0096-3003(87)90015-4
Google Scholar
[3]
B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10 (1992) 307-318.
DOI: 10.1007/bf00364252
Google Scholar
[4]
T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods. Int. J. Numer. Methods Engrg. 37 (1994) 229-256.
DOI: 10.1002/nme.1620370205
Google Scholar
[5]
J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139 (1996) 289-314.
DOI: 10.1016/s0045-7825(96)01087-0
Google Scholar
[6]
C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139 (1996) 237-262.
Google Scholar
[7]
W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids 20 (1995) 1081-1106.
DOI: 10.1002/fld.1650200824
Google Scholar
[8]
J.S. Chen, C. Pan, C.T. Wu, W.K. Liu, Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 139 (1996) 195-227.
DOI: 10.1016/s0045-7825(96)01083-3
Google Scholar
[9]
N. Sukumar, B. Moran, T. Belytschko, The natural element method in solid mechanics. Int. J. Numer. Methods Engrg. 43 (1998) 839-887.
DOI: 10.1002/(sici)1097-0207(19981115)43:5<839::aid-nme423>3.0.co;2-r
Google Scholar
[10]
S.N. Atluri, T.L. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25 (2000) 169-179.
DOI: 10.1007/s004660050467
Google Scholar
[11]
E.J. Kansa, Multiqudrics - A scattered data approximation scheme with applications to computational fluid-dynamics-I Surface approximations and partial derivatives. Comput. Math. Appl. 19 (1990) 127-145.
DOI: 10.1016/0898-1221(90)90270-t
Google Scholar
[12]
E.J. Kansa, Multiqudrics - A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19 (1990) 147-161.
DOI: 10.1016/0898-1221(90)90271-k
Google Scholar
[13]
X. Zhang, J.S. Chen, S. Osher, A multiple level set method for modeling grain boundary evolution of polycrystalline materials. Int. Multi. Mech. 1 (2008) 178-191.
DOI: 10.12989/imm.2008.1.2.191
Google Scholar
[14]
R.P. Agarwal, D. O'Regan, Multiple nonnegative solutions for second order impulsive differential equations. Appl. Math. Comput. 114 (2000) 51-59.
DOI: 10.1016/s0096-3003(99)00074-0
Google Scholar
[15]
M.K. Kadalbajoo, Y.N. Reddy, Numerical treatment of singularly perturbed two point boundary value problems. Appl. Math. Comput. 21 (1987) 93-110.
DOI: 10.1016/0096-3003(87)90020-8
Google Scholar
[16]
H.M. Srivastava, R.K. Saxena, Operators of fractional integration and their applications. Appl. Math. Comput. 118 (2001) 1-52.
Google Scholar
[17]
J.S. Chen, C. Pan, C.T. Wu, Reproducing kernel particle methods for rubber hyperelasticity. Comput. Mech. 19 (1997) 211-227.
Google Scholar
[18]
J.S. Chen, S. Yoon, W.K. Liu, An improved reproducing kernel particle method for nearly incompressible hyperelastic solids, Comput. Methods. Appl. Mech. Eng., 181 (1997) 117-145.
DOI: 10.1016/s0045-7825(99)00067-5
Google Scholar
[19]
J.S. Chen, K.H. Chang, E. Hardee, S. Yoon, M. Kaneko, I. Grindeanu, A structural nonlinear analysis workspace (SNAW) based on meshless methods, Adv. Eng. Software, 30 (1997) 153-175.
DOI: 10.1016/s0965-9978(98)00072-6
Google Scholar
[20]
J.S. Chen, C. Pan, C.T. Wu, Applications of reproduction kernel particle method to large deformation and contact analysis of elastomers. Rubber Chem. Technol., 71 (1998) 191-213.
DOI: 10.5254/1.3538479
Google Scholar
[21]
J.S. Chen, C. Pan, M.O.L. Roque, et al., A Lagrangian reproducing kernel particle method for metal forming analysis, Comput. Mech. 22 (1998) 289-307.
DOI: 10.1007/s004660050361
Google Scholar
[22]
J.S. Chen, Y.C. Wu, Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics. Comput. Methods Appl. Sci., 5 (2007) 55-76.
DOI: 10.1007/978-1-4020-6095-3_4
Google Scholar