Support Size Adjustment Algorithm for Reproducing Kernel Particle Method with Semi-Lagrangian Formulation

Article Preview

Abstract:

As one of meshfree methods, reproducing kernel particle method (RKPM) is usually associated with semi-Lagrangian formulation for large deformation problem to avoid the failure of one-to-one mapping from current configuration to reference configuration. However, numerical crack may happen for large deformation problem working with semi-Lagrangian formulation, if we keep the support size of reproducing kernel shape function as constant. This paper proposed an algorithm to adjust the support size at every step and some numerical results are presented to demonstrate the improvement by the proposed algorithm. Meanwhile, this algorithm is very easy to implement for coding, which does not add much computational cost.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 368-373)

Pages:

1660-1666

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to nonspherical stars. Monthly Notices Royal astron. Soc. 181 (1977) 375-389.

DOI: 10.1093/mnras/181.3.375

Google Scholar

[2] L.M. Watson, M.R. Scott, Solving spline-collocation approximations to nonlinear two-point boundary-value problems by a homotopy method. Appl. Math. Comput. 24 (1987) 333-357.

DOI: 10.1016/0096-3003(87)90015-4

Google Scholar

[3] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10 (1992) 307-318.

DOI: 10.1007/bf00364252

Google Scholar

[4] T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods. Int. J. Numer. Methods Engrg. 37 (1994) 229-256.

DOI: 10.1002/nme.1620370205

Google Scholar

[5] J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139 (1996) 289-314.

DOI: 10.1016/s0045-7825(96)01087-0

Google Scholar

[6] C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139 (1996) 237-262.

Google Scholar

[7] W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids 20 (1995) 1081-1106.

DOI: 10.1002/fld.1650200824

Google Scholar

[8] J.S. Chen, C. Pan, C.T. Wu, W.K. Liu, Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 139 (1996) 195-227.

DOI: 10.1016/s0045-7825(96)01083-3

Google Scholar

[9] N. Sukumar, B. Moran, T. Belytschko, The natural element method in solid mechanics. Int. J. Numer. Methods Engrg. 43 (1998) 839-887.

DOI: 10.1002/(sici)1097-0207(19981115)43:5<839::aid-nme423>3.0.co;2-r

Google Scholar

[10] S.N. Atluri, T.L. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25 (2000) 169-179.

DOI: 10.1007/s004660050467

Google Scholar

[11] E.J. Kansa, Multiqudrics - A scattered data approximation scheme with applications to computational fluid-dynamics-I Surface approximations and partial derivatives. Comput. Math. Appl. 19 (1990) 127-145.

DOI: 10.1016/0898-1221(90)90270-t

Google Scholar

[12] E.J. Kansa, Multiqudrics - A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19 (1990) 147-161.

DOI: 10.1016/0898-1221(90)90271-k

Google Scholar

[13] X. Zhang, J.S. Chen, S. Osher, A multiple level set method for modeling grain boundary evolution of polycrystalline materials. Int. Multi. Mech. 1 (2008) 178-191.

DOI: 10.12989/imm.2008.1.2.191

Google Scholar

[14] R.P. Agarwal, D. O'Regan, Multiple nonnegative solutions for second order impulsive differential equations. Appl. Math. Comput. 114 (2000) 51-59.

DOI: 10.1016/s0096-3003(99)00074-0

Google Scholar

[15] M.K. Kadalbajoo, Y.N. Reddy, Numerical treatment of singularly perturbed two point boundary value problems. Appl. Math. Comput. 21 (1987) 93-110.

DOI: 10.1016/0096-3003(87)90020-8

Google Scholar

[16] H.M. Srivastava, R.K. Saxena, Operators of fractional integration and their applications. Appl. Math. Comput. 118 (2001) 1-52.

Google Scholar

[17] J.S. Chen, C. Pan, C.T. Wu, Reproducing kernel particle methods for rubber hyperelasticity. Comput. Mech. 19 (1997) 211-227.

Google Scholar

[18] J.S. Chen, S. Yoon, W.K. Liu, An improved reproducing kernel particle method for nearly incompressible hyperelastic solids, Comput. Methods. Appl. Mech. Eng., 181 (1997) 117-145.

DOI: 10.1016/s0045-7825(99)00067-5

Google Scholar

[19] J.S. Chen, K.H. Chang, E. Hardee, S. Yoon, M. Kaneko, I. Grindeanu, A structural nonlinear analysis workspace (SNAW) based on meshless methods, Adv. Eng. Software, 30 (1997) 153-175.

DOI: 10.1016/s0965-9978(98)00072-6

Google Scholar

[20] J.S. Chen, C. Pan, C.T. Wu, Applications of reproduction kernel particle method to large deformation and contact analysis of elastomers. Rubber Chem. Technol., 71 (1998) 191-213.

DOI: 10.5254/1.3538479

Google Scholar

[21] J.S. Chen, C. Pan, M.O.L. Roque, et al., A Lagrangian reproducing kernel particle method for metal forming analysis, Comput. Mech. 22 (1998) 289-307.

DOI: 10.1007/s004660050361

Google Scholar

[22] J.S. Chen, Y.C. Wu, Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics. Comput. Methods Appl. Sci., 5 (2007) 55-76.

DOI: 10.1007/978-1-4020-6095-3_4

Google Scholar