p.2333
p.2341
p.2346
p.2351
p.2359
p.2364
p.2369
p.2376
p.2381
The Analysis of Building Subsidence Prediction Based on Grey Model Combined with Radial Basis Neural Network
Abstract:
In this paper, a new prediction model named RBNN-GM(1,1) (Radial Basis Neural Network-Grey Model) model was constructed and used for the analysis of building subsidence prediction for the Palms Together Dagoba in Famen Temple in Shaanxi Province in China. The constructed model can make full use of the advantages of few samples and little information predicting in Grey Theory and swift and self-learning in RBNN. The prediction results show that the combined model is more effective than the common grey model. The proposed combined model for building subsidence prediction may offer scientific rationale for estimating whether the building transmutation exceeds the criterion and provide reference for taking the corresponding safety measures.
Info:
Periodical:
Pages:
2359-2363
Citation:
Online since:
October 2011
Authors:
Price:
Сopyright:
© 2012 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: