[1]
Červenka J. Discrete Crack Modeling in Concrete Structures [D]. Boulder: University of Colorado,1994.
Google Scholar
[2]
Galdos R. A Finite Element Technique to Simulate the Stable Shape Evolution of Planar Cracks with an Application to a Semi-elliptical Surface Crack in a Bimaterial Finite Solid [J], Int. J. Numer. Meth. Engng, 1997, 40(5): 905–917.
DOI: 10.1002/(sici)1097-0207(19970315)40:5<905::aid-nme94>3.0.co;2-3
Google Scholar
[3]
Gravouil A, Moe¨s N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets–part II:level set update. Int J Numer Meth Engng. 2002,53:2569-86.
DOI: 10.1002/nme.430
Google Scholar
[4]
Areias PMA, Belytschko T.. Non-linear analysis of shells with arbitrary evolving cracks using XFEM [J]. Int J Numer Meth Engng , 2005,62:384-415.
DOI: 10.1002/nme.1192
Google Scholar
[5]
Mi Y. Three-dimensional Analysis of Crack Growth [M]. Southampton: Computational Mechanics Publications, 1996.
Google Scholar
[6]
Cisilino A P, Aliabadi M H. Three-dimensional Boundary Element Analysis of Fatigue Crack Growth in Linear and Non-linear Fracture Problems [J]. Engineering Fracture Mechanics, 1999, 63(6): 713–733.
DOI: 10.1016/s0013-7944(99)00047-8
Google Scholar
[7]
Krysl P, Belytschko T. The Element-Free Galerkin Method for Dynamic Propagation of Arbitrary 3-D Cracks [J]. Int. J. Numer. Meth. Engng, 1999, 44(6): 767–800.
DOI: 10.1002/(sici)1097-0207(19990228)44:6<767::aid-nme524>3.0.co;2-g
Google Scholar
[8]
Stephane Bordas, Timon Rabczuk, Goangseup Zi. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment[J].Engineering Fracture Mechanics,2008,75(5): 973-960.
DOI: 10.1016/j.engfracmech.2007.05.010
Google Scholar
[9]
Huang X C, Gu J C, Xia X H. Numerical Analysis on Crack Propagation under Compressing Load by Displacement Discontinuity Method [J]. Journal of Shanghai Jiao Tong University, 2001, 35(10): 1486–1490. (in Chinese).
Google Scholar
[10]
Yan X Q. Automated Simulation of Fatigue Crack Propagation for Two-dimensional Linear Elastic Fracture Mechanics Problems by Boundary Element Method [J]. Engineering Fracture Mechanics, 2007, 74(14): 2225–2246.
DOI: 10.1016/j.engfracmech.2006.10.020
Google Scholar
[11]
Matthias S, Hans A R, Gunter K. A New Criterion for the Prediction of Crack Development in Multiaxially Loaded Structures [J]. International Journal of Fracture, 2002, 117(2): 129–144.
Google Scholar
[12]
Dobroskok A, Ghassemi A, Linkov A. Extended Structural Criterion for Numerical Simulation of Crack Propagation and Coalescence under Compressive Loads [J]. International Journal of Fracture, 2005, 133(3): 223–246.
DOI: 10.1007/s10704-005-4042-4
Google Scholar
[13]
Bandis S C, Lumden A C, Barton N R. Fundamentals of Rock Joint Deformation[J]. International Journal of Rock Mechanics Mining Science and Geomechanics Abstracts,1983, 20(6): 249-268.
DOI: 10.1016/0148-9062(83)90595-8
Google Scholar
[14]
Barton N R, Bandis S C, Bakhtar K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics Mining Science and Geomechanics Abstracts,1985, 22(3): 121-140.
DOI: 10.1016/0148-9062(85)93227-9
Google Scholar
[15]
Kulhaway F. H. Stress-deformation properties of rock and rock discontinuities[J]. Engineering geology. 1975,9(4):327-350.
DOI: 10.1016/0013-7952(75)90014-9
Google Scholar