Experiment Research on Mechanical Behavior for Latticed Concrete-Filled Steel Tubular Tower with Three Limbs

Abstract:

Article Preview

Based on the 1.5MW cone cylinder wind turbine tower widely used at present, latticed concrete-filled steel tubular (CFST) tower with three limbs was designed. The stress mechanism and failure process, hysteretic properties, bearing capacity and energy dissipation capacity were studied by quasi-static test on the tower model. The results indicate that the hysteretic loops of the latticed CFST tower with three limbs present asymmetrical plump “spindle” and there is no obvious "pinch" phenomenon, which shows good seismic performance and energy dissipation capacity; and that owing to the latticed CFST tower with three limbs is asymmetric along the centroidal axis perpendicular to loading direction, plastic hinge finally appeared in the tower column foot which beared the largest force, the bottom web members were buckled and occur unstable failure. From the analysis it can be seen that the latticed CFST tower structure with three limbs has value of further research and promotion.

Info:

Periodical:

Advanced Materials Research (Volumes 368-373)

Edited by:

Qing Yang, Li Hua Zhu, Jing Jing He, Zeng Feng Yan and Rui Ren

Pages:

58-61

DOI:

10.4028/www.scientific.net/AMR.368-373.58

Citation:

B. Li et al., "Experiment Research on Mechanical Behavior for Latticed Concrete-Filled Steel Tubular Tower with Three Limbs", Advanced Materials Research, Vols. 368-373, pp. 58-61, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.