Changes of Pore Structures in Hardened Cement Paste Subjected to Flexural Loading and Wet-Dry Cycles in Seawater

Article Preview

Abstract:

The coupling effect of flexural loading and environmental factors has great influence on the pore structures in hardened cement paste. In this paper, Mercury intrusion porosimetry (MIP) and field emission scanning electron microscope (SEM) were used to analyze and observe the changes of pore structures in hardened cement paste subjected to flexural loading and wet-dry cycles in simulated seawater. The results show that the porosity greatly increases when the flexural loading level is raised from 0 f (the ultimate flexural loading capacity) to 0.8 f. Micro-cracks are observed and the connectivity, width and density of micro-cracks increase with the increment of flexural loading. The peaks position of pore size shifts toward greater micro-pores when the flexural loading was raised from 0 f to 0.8 f. The flexural loading and simulated seawater accelerate the degradation of pore structures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 374-377)

Pages:

1930-1933

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Maekawa and T. Ishida. In: International Conference on Ion and Mass Transport in Cement-Based Materials. edited by Hooton RD.Toronto, Canada 1999, pp.219-238.

Google Scholar

[2] W. Sun, R. Mu, X. Luo and C.W. Miao. Cem. Concr. Res., 2002, 32(12), pp.1859-1864.

Google Scholar

[3] U. Schneider and S.W. Chen. Cem. Concr. Res., 1998, 28(4), pp.509-522.

Google Scholar

[4] U. Schneider and S.W. Chen. ACI Mater. J., 1996, 96(1), pp.47-51.

Google Scholar

[5] W.G. Piasta, Z. Sawicz and J. Piasta. Cem. Concr. Res., 1989, 19(2), pp.216-227.

Google Scholar

[6] W.G. Piasta and U. Schneider. Cem. Concr. Res., 1992. 22(1): pp.149-158.

Google Scholar

[7] Y. Zhou, M.D. Cohen and L.W. Dolch. ACI Mater. J., 1994, 91 (6), pp.595-601.

Google Scholar

[8] W. Sun, Y.M. Zhang, H.D. Yan and R. Mu. Cem. Concr. Res., 1999, 29(9), pp.1519-1523.

Google Scholar

[9] H.F. Yu, R. Mu, W. Sun and C.W. Miao. J. Chinese Ceramic Society, 2005, 33(4), pp.492-499.

Google Scholar

[10] M.T. Bassuoni and M.L. Nehdi. Cem. Concr. Res., 2009, 39(3), pp.206-226.

Google Scholar

[11] S.J. Jaffer and C.M. Hansson. Cem. Concr. Res., 2009, 39(2), pp.116-125.

Google Scholar

[12] S. Yoon, K. Wang, W. Weiss and S.P. Shah. ACI Mater. J., 2000, 97 (6), pp.637-644.

Google Scholar

[13] O. Poupard, V. L'Hostis, S. Catinaud, I. Petre-Lazar. Cem. Concr. Res., 2006, 36(3):504-520.

Google Scholar

[14] M.A. Pech-Canul and P. Castro. Cem. Concr. Res., 2002, 32(3), pp.491-498.

Google Scholar

[15] B. Mather. Cem. Concr. Compos., 2004, 26(1), pp.3-4.

Google Scholar

[16] O. Wowra and M.J. Setzer, In: 2nd International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete, edited by Andrade C and Kropp J RILEM Publications, Paris, 2000, pp.3-12.

DOI: 10.1617/2912143578.002

Google Scholar

[17] G.S. Armatas. Chemical Engineering Science, 2006, 61(14), pp.4662-4675.

Google Scholar

[18] R. Vočka, C. Galle, M. Dubois and P. Lovera. Cem. Concr. Res., 2000, 30 (4), pp.521-527.

Google Scholar