Generalized Multiple-Model Adaptive Estimation for Mars Entry Navigation

Article Preview

Abstract:

In order to satisfy the needs of Mars precision landing, a Mars entry navigation method is proposed for the problem of Mars atmospheric density model uncertainty. The navigation system processes accelerometer outputs as measurements, employs an extended Kalman filter bank regulated by the generalized multiple-model adaptive estimation method. Simulation results demonstrate the navigation system can identify the real atmospheric density model automatically, and show adaptivity and robustness to the uncertainty of atmospheric density. The navigation performance is greatly improved compared with traditional dead-reckoning

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

1190-1194

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. D. Braun, R. M. Manning, Mars Exploration Entry, Descent, and Landing Challenges, Journal of Spacecraft and Rockets, vol. 44, 2007, pp.310-323, doi: 10. 2514/1. 25116.

DOI: 10.2514/1.25116

Google Scholar

[2] A. A. Wolf, J. Tooley, S. Ploen, I. Mark, A. Behcet, G. Konstantin, Performance Trades for Mars Pinpoint Landing, IEEE Aerospace Conference Proceedings, Piscataway, NJ, 2006, pp.1161-1176, doi: 10. 1109/AERO. 2006. 1655793.

DOI: 10.1109/aero.2006.1655793

Google Scholar

[3] D. M. Olivier, R. H. Bishop, Multi-model Navigation with Gating Networks for Mars Entry Precision Landing, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, (2004).

DOI: 10.2514/6.2004-5279

Google Scholar

[4] J. F. Levesque, J. de Lafontaine, Innovative Navigation Schemes for State and Parameter Estimation during Mars Entry, Journal of Guidance Control and Dynamics, vol. 30, 2007, pp.169-184, doi: 10. 2514/1. 25107.

DOI: 10.2514/1.25107

Google Scholar

[5] R. Carolina, V. John, Structured Adaptive Model Inversion Controller for Mars Atmospheric Flight, Journal of Guidance Control and Dynamics, vol. 31, 2008, pp.937-953, doi: 10. 2514/1. 33085.

DOI: 10.2514/1.33085

Google Scholar

[6] M. C. Heyne, Spacecraft Precision Entry Navigation Using an Adaptive Aigma Point Kalman Filter Bank, Austin: The University of Texas at Austin, (2007).

Google Scholar

[7] J. Marschke, J. L. Crassidis, Q. M. Lam, Multiple Model Adaptive Estimation for Inertial Navigation during Mars Entry, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, (2008).

DOI: 10.2514/6.2008-7352

Google Scholar

[8] D. T. Magill, Optimal Adaptive Estimation of Sampled Stochastic Processes, IEEE Transactions on Automatic Control, vol. 10, 1965, pp.434-439.

DOI: 10.1109/tac.1965.1098191

Google Scholar

[9] N. A. Badr, J. L. Crassidis, C. Yang, Convergence Properties of Autocorrelation-based Generalized Multiple-model Adaptive Estimation, AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, (2008).

DOI: 10.2514/6.2008-6476

Google Scholar

[10] S. N. Sheldon, P. S. Maybeck, An Optimizing Design Strategy for Multiple Model Adaptive Estimation and Control, IEEE Transactions on Automatic Control, vol. 38, 1993, pp.651-654, doi: 10. 1109/9. 250541.

DOI: 10.1109/9.250541

Google Scholar