[1]
K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, Journal of Computational Mathematics, vol. 4, pp.279-289, May (1986).
Google Scholar
[2]
K. Feng, M. Z. Qin, Hamiltonian algorithms for Hamiltonian dynamical systems, Progress in Natural Science, vol. 1, pp.105-116, February (1991).
Google Scholar
[3]
K. Feng, M. Z. Qin, Symplectic Geometric Algorithm for Hamiltonian Systems, Hangzhou: Zhejiang Science & Technology Press, 2003(in Chinese).
Google Scholar
[4]
G. Sun, Construction of high order symplectic Runge-Kutta methods, Journal of Computational Mathematics, vol. 11, pp.250-256, May (1993).
Google Scholar
[5]
A. G. Xiao, S. F. Li, Characterization and construction of symplectic Runge-Kutta methods, Numerical Mathematics: A Journal of Chinese Universities, vol. 17, pp.213-222, July 1995(in Chinese).
Google Scholar
[6]
G. Sun, A simple way constructing symplectic Runge-Kutta methods, Journal of Computational Mathematics, vol. 18, pp.61-68, January (2000).
Google Scholar
[7]
A. G. Xiao, Symplectic Runge-Kutta-Nyström methods, Natural Science Journal of Xiangtan University, vol. 17, pp.213-222, January 1997(in Chinese).
Google Scholar
[8]
L. P. Wen, A class of diagonally implicit symplectic Runge-Kutta-Nyström methods, Natural Science Journal of Xiangtan University, vol. 20, pp.1-4, April 1998(in Chinese).
Google Scholar
[9]
Q. F. Chen, A. G. Xiao, Some new properties of Runge-Kutta-Nyström methods, Mathematica Numerica Sinica, vol. 30, pp.201-212, April 2008(in Chinese).
Google Scholar
[10]
F. Z. Wang, Y. F. He, Several new numerical methods and their comparative studies for power system transient stability analysis, Power System Protection and Control, vol. 37, p.15–19, December 2009(in Chinese).
Google Scholar
[11]
S. K. Khaitan, J. D. McCalley, Q. M. Chen, Multifrontal solver for online power system time-domain simulation, IEEE Trans on Power Systems, vol. 23, p.1727–1737, April (2008).
DOI: 10.1109/tpwrs.2008.2004828
Google Scholar