Transient Stability Simulation by Explicit and Symplectic Runge-Kutta-Nyström Method

Article Preview

Abstract:

The symplectic algorithm is a kind of new numerical integration methods. This paper proposes the application of the explicit and symplectic Runge-Kutta-Nyström method to solve the differential equations encountered in the power system transient stability simulation. The proposed method achieves significant improvement both in speed and in calculation precision as compared to the conventional Runge-Kutta method which is widely used for power system transient stability simulation. The proposed method is applied to the IEEE 145-bus system and the results are reported.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

1960-1964

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, Journal of Computational Mathematics, vol. 4, pp.279-289, May (1986).

Google Scholar

[2] K. Feng, M. Z. Qin, Hamiltonian algorithms for Hamiltonian dynamical systems, Progress in Natural Science, vol. 1, pp.105-116, February (1991).

Google Scholar

[3] K. Feng, M. Z. Qin, Symplectic Geometric Algorithm for Hamiltonian Systems, Hangzhou: Zhejiang Science & Technology Press, 2003(in Chinese).

Google Scholar

[4] G. Sun, Construction of high order symplectic Runge-Kutta methods, Journal of Computational Mathematics, vol. 11, pp.250-256, May (1993).

Google Scholar

[5] A. G. Xiao, S. F. Li, Characterization and construction of symplectic Runge-Kutta methods, Numerical Mathematics: A Journal of Chinese Universities, vol. 17, pp.213-222, July 1995(in Chinese).

Google Scholar

[6] G. Sun, A simple way constructing symplectic Runge-Kutta methods, Journal of Computational Mathematics, vol. 18, pp.61-68, January (2000).

Google Scholar

[7] A. G. Xiao, Symplectic Runge-Kutta-Nyström methods, Natural Science Journal of Xiangtan University, vol. 17, pp.213-222, January 1997(in Chinese).

Google Scholar

[8] L. P. Wen, A class of diagonally implicit symplectic Runge-Kutta-Nyström methods, Natural Science Journal of Xiangtan University, vol. 20, pp.1-4, April 1998(in Chinese).

Google Scholar

[9] Q. F. Chen, A. G. Xiao, Some new properties of Runge-Kutta-Nyström methods, Mathematica Numerica Sinica, vol. 30, pp.201-212, April 2008(in Chinese).

Google Scholar

[10] F. Z. Wang, Y. F. He, Several new numerical methods and their comparative studies for power system transient stability analysis, Power System Protection and Control, vol. 37, p.15–19, December 2009(in Chinese).

Google Scholar

[11] S. K. Khaitan, J. D. McCalley, Q. M. Chen, Multifrontal solver for online power system time-domain simulation, IEEE Trans on Power Systems, vol. 23, p.1727–1737, April (2008).

DOI: 10.1109/tpwrs.2008.2004828

Google Scholar