[1]
Gouesbet G, Maheu B, and Gréhan G Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation ,J. Opt. Soc. Am. A vol. 5, pp.1427-43 (1988).
DOI: 10.1364/josaa.5.001427
Google Scholar
[2]
Gouesbet G, Gréhan G, and Maheu B Computations of the coefficients in the generalized Lorenz-Mie theory using three different methods, Appl. Opt. vol. 27, pp.4874-83 (1988).
DOI: 10.1364/ao.27.004874
Google Scholar
[3]
Gouesbet G, Gréhan G, and Maheu B Localized interpretation to compute all the coefficients in the generalized Lorenz-Mie theory, J. Opt. Soc. Am. A vol. 7, pp.998-1003 (1990).
DOI: 10.1364/josaa.7.000998
Google Scholar
[4]
Wu Z S, Guo L X, Ren K F, Gouesbet G, and Gréhan G Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres, Appl. Opt. vol. 36, p.5188–98 (1997).
DOI: 10.1364/ao.36.005188
Google Scholar
[5]
Han Y P and Wu Z S Scattering of a spheroidal particle illuminated by a Gaussian beam, Appl. Opt. vol. 40, pp.2501-09 (2001).
DOI: 10.1364/ao.40.002501
Google Scholar
[6]
Han Y, Zhang H, and Sun X Scattering of Shaped Beam by an Arbitrarily Oriented Spheroid Having Layers with Non-confocal Boundaries, Applied physics B– Lasers and Optics vol. 84, 485-92 (2006).
DOI: 10.1007/s00340-006-2298-7
Google Scholar
[7]
Han Y P, Zhang H Y and Han G X The expansion coefficients of arbitrarily shaped beam in oblique illumination, Optics Express vol. 15, pp.735-46 (2007).
DOI: 10.1364/oe.15.000735
Google Scholar
[8]
Ren K F, Gréhan G, and Gouesbet G Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory formulation and numerical results" J. Opt. Soc. Am. A vol. 14, pp.3014-1997.
DOI: 10.1364/josaa.14.003014
Google Scholar
[9]
Mees L, Ren K F, Gréhan G, and Gouesbet G Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results, Applied Optics vol. 38, pp.1867-76 (1999).
DOI: 10.1364/ao.38.001867
Google Scholar
[10]
Wang D S and Barber P W Scattering by inhomogeneous nonspherical objects, Appl. Opt. vol. 18, p.1190–97 (1975).
Google Scholar
[11]
Doicu, A. and T. Wriedt, Formulations of the extended boundary condition method for incident Gaussian beams using multiple-multipole expansions, J. Modern. Opt., Vol. 44, pp.785-801, (1997).
DOI: 10.1080/09500349708230695
Google Scholar
[12]
Drain, B. T. and P. J. Flatau, Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A, Vol. 11, 1491-1499, (1994).
Google Scholar
[13]
Ahmed S and Naqvi Q. A. Electromagnetic Scattering from a Perfect Electromagnetic Conductor Cylinder Buried in a Dielectric Half-Space,. Progress In Electromagnetics Research, PIER Vol. 78, pp.25-38, (2008).
DOI: 10.2528/pier07081601
Google Scholar
[14]
A. R. Edmonds, Angular momentum in quantum mechanics, Princeton University Press, Princeton, N. J, 1957, Chap. 4.
Google Scholar
[15]
J. A. Stratton, Electromagnetic Theory, New York, McGraw-Hill, (1941).
Google Scholar
[16]
A. Doicu and T. Wriedt, Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions, Applied. Optics. vol. 36, pp.2971-2978 (1997).
DOI: 10.1364/ao.36.002971
Google Scholar