Numerical Simulation of Particle Axial Mixing in Rotary Kiln

Article Preview

Abstract:

The discrete element code, EDEM, has been employed to simulate the axial mixing of size-binary particles in rotary kiln. Number of contacts has been introduced to track the progress of mixing and number of contacts between different particles has been took as mixing index between different particles to analyze the degree of mixing The results show that the larger velocity of particles in active layer is the main reason for the mixing; axial displacement of smaller particles is due to penetration of smaller particles through the intervals between larger particles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

2216-2221

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Richard and N. Taberlet, Recent advances in DEM simulations of grains in a rotating drum, Soft Matter, vol. 4, 2008, pp.1345-1348, doi: 10. 1039/b71729c.

DOI: 10.1039/b717129c

Google Scholar

[2] G. Juarez, J. M. Ottino and R. M. Lueptow, Axial band scaling for bi-disperse mixtures in granular tumblers, Physical. Review E, vol. 78, 2008, p.031306(8), doi: 10. 1103/Phys Rev E. 78. 031306.

DOI: 10.1103/physreve.78.031306

Google Scholar

[3] K. M. Hill and J. Kakalios, Reversible axial segregation of rotating granular media, Phys. Rev. E, vol. 52, July 1995, pp.4393-4400.

DOI: 10.1103/physreve.52.4393

Google Scholar

[4] S. Das Gupta, S. K. Bhatia, and D. V. Khakhar, Axial segregation of particles in a horizontal rotating cylinder, Chem. Eng. Sci, vol. 46, 1991, pp.1513-1517.

DOI: 10.1016/0009-2509(91)85076-a

Google Scholar

[5] M. Dury and G. H. Ristow, Radial segregation through axial migration, Europhys. Letters, vol. 48, 1999, pp: 60-65.

DOI: 10.1209/epl/i1999-00114-3

Google Scholar

[6] G. J. Finnie, N. P. Kruyt, M. Ye, C. Zeilstra, and J. A. M. Kuipers, Longitudinal and transverse mixing in rotary kilns: A discrete element method approach, Chem. Eng. Sci, vol. 60, April 2005, pp.4083-4091, doi: 10. 1016/j. ces. 2004. 12. 048.

DOI: 10.1016/j.ces.2004.12.048

Google Scholar

[7] Sun Q. C and Wang G. Q, Introduction to Granular Mechanics, Beijing: Science Press, 2009, Vol. 1. p.33.

Google Scholar

[8] M. A. I. Schutyser, J. T. Padding, F. J. Weber, W. J. Briels, A. Rinzema, and R. boom, Discrete particle simulations predicting mixing behavior of solid substrate particles in a rotating drum fermenter, Biotechnology and Bioengineering, vol. 75, April 2001, pp.666-675.

DOI: 10.1002/bit.1192

Google Scholar

[9] R. Van Puyvelde, B. R. Young, M. A. Wilson, and S. J. Shmidt, Experimental determination of transverse mixing kinetics in a rolling drum by image analysis, Powder Technology, vol. 106, April 1999, pp.183-191, PII: S0032-5910(99)00074-1.

DOI: 10.1016/s0032-5910(99)00074-1

Google Scholar

[10] R. Van Puyvelde, Comparison of discrete elemental modeling to experimental data regarding mixing of solids in the transverse direction of a rotating kiln, Chem. Eng. Sci, vol. 61, March 2006, pp.4462-4465, dol: 10. 1016/j. ces. 2006. 02. 013.

DOI: 10.1016/j.ces.2006.02.013

Google Scholar