Investigation of Mechanical Behavior of Stir Casted Al Based Composites Reinforced With B4C Nanoparticles

Article Preview

Abstract:

In this study, aluminum alloy (Al-2wt. % Cu) matrix composites reinforced with 1, 2 and 4 wt. % boron carbide nanoparticles with average size of 80 nm were fabricated via stir casting method at 850 °C. The microstructures of composites were studied by scanning electron microscope (SEM). Density measurement, tensile and compressive tests were carried out to identify the mechanical properties of composites and effect of B4C nanoparticles amount. In all fabricated composites, severe agglomeration was observed in the micrographs. With increasing the amount of B4C nanoparticles up to 2 wt. %, yield and tensile strength increased but with more increasing B4C content they were decreased. Also, the compressive strength of samples was increased with increasing weight percentage of B4C nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

2728-2732

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. J Lloyd: Int. Mater. Rev. Vol. 39 (1994), p.1.

Google Scholar

[2] J. W. Kaczmar, K. Pietrzak, and W. Wlosinski: Mater. Process. Techn. Vol. 106 (2000), p.58.

Google Scholar

[3] K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, J. P. Celis and L. Froyen: Mater. Process. Techn. Vol. 142 (2003), p.738.

Google Scholar

[4] A. Mazahery, H. Abdizadeh and H.R. Baharvandi: Mater. Sci. Eng. A Vol. 518 (2009), p.61.

Google Scholar

[5] J.B. Fogagnolo, M.H. Robert and J.M. Torralba: Mater. Sci. Eng. A Vol. 426 (2006), p.85.

Google Scholar

[6] Y.Q. Liu, H.T. Cong, W. Wang, C.H. Sun and H.M. Cheng: Mater. Sci. Eng. A Vol. 505 (2009), p.151.

Google Scholar

[7] Zhang, K.T. Ramesh and E.S. Chin: Mater. Sci. Eng. A Vol. 384 (2004), p.26.

Google Scholar

[8] H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch and S.R. Nutt: Mater. Sci. Eng. A Vol. 297 (2001), p.94.

Google Scholar

[9] D. L. Zhang, J. Liang and J. Wu: Mater. Sci. Eng. A Vol. 375-377 (2004), p.911.

Google Scholar

[10] I. Kerti and F Toptan: Mater. Lett. Vol. 62 (2008), p.1215.

Google Scholar

[11] G. Jiang, W. Wu, G.S. Daehn and R.H. Wagoner: Acta Mater. Vol. 48 (2000), p.4331.

Google Scholar

[12] A. Alizadeh, E. Taheri-Nassaj and N. Ehsani: Europ. Ceram. Soc. Vol. 24 (2004), p.3227.

Google Scholar

[13] S. Oh, J. A. Cornie and K. C. Russel: Metall. Trans. A, Vol. 20 (1989), p.533.

Google Scholar

[14] B.P. Krishnan, M. K Surappa and P. K Rohatgi: Mater. Sci. Vol. 16(5) 1981, p.1209.

Google Scholar

[15] F. Dellanney, L. Rozen and A. Deryttere: Mater. Sci. Vol. 22 (1987), p.1.

Google Scholar

[16] B.C. Pai, A.G. Kulkarni, T.A. Bhasker, N. Balasubramanian: Mater. Sci. Vol. 5(7) (1980), p.1860.

Google Scholar

[17] J. Hashim, L. Looney and M.S. J Hashmi: Mater. Process. Techn. Vol. 119 (2001), p.324.

Google Scholar

[18] X.J. Wang, X.S. Hu, K. Wu, K.K. Deng, W.M. Gan, C.Y. Wang and M.Y. Zheng: Mater. Sci. Eng. A Vol. 492 (2008), p.481.

Google Scholar

[19] B. Previtali, D. Pocci and C. Taccardo: Compos. Part A: Appl. Sci. Manuf. Vol. 39 (2008), p.1606.

Google Scholar

[20] M.G. McKimpson and T.E. Scott: Mater. Sci. Eng. A Vol. 107 (1989), p.93.

Google Scholar

[21] T.G. Nieh and R.F. Karlak: Scr. Metall. Vol. 18 (1984), p.25.

Google Scholar

[22] A. Canakci, F. Arslan and I. Yasar: Mater. Sci. Vol. 42 (2007), p.9536.

Google Scholar

[23] A. Daoud and M. Abo-Elkhar: Mater. Process. Techn. Vol. 120 (2002), p.296.

Google Scholar

[24] A. Pakdel and H. Farhangi: Arab. J. Sci. Eng. Vol. 34 (2009), p.167.

Google Scholar