[1]
S. H. Zhang, K. Zhang, Y.C. Xu, et al. 2007. Deep-drawing of magnesium alloy sheets at warm temperatures. Journal of Materials Processing Technology, 185: 147–151.
DOI: 10.1016/j.jmatprotec.2006.03.150
Google Scholar
[2]
K. Mori, H. Tsuji. 2007. Cold deep drawing of commercial magnesium alloy sheets. Annals of the CIRP, 56(1): 285-288.
DOI: 10.1016/j.cirp.2007.05.066
Google Scholar
[3]
S. Yoshihara, K. Manabe, H. Nishimure. 2005. Effect of blank holder force control in deep-drawing process of magnesium alloy sheet. Journal of Materials Processing Technology, 170: 579–585.
DOI: 10.1016/j.jmatprotec.2005.06.028
Google Scholar
[4]
E. Doege, K. Droder. 2001. Sheet metal forming of magnesium wrought alloys —formability and process technology. Journal of Materials Processing Technology, 115: 14–19.
DOI: 10.1016/s0924-0136(01)00760-9
Google Scholar
[5]
A. Morsy, K. Manabe. Finite element analysis of magnesium AZ31 alloy sheet in warm deep-drawing process considering heat transfer effect. Materials Letters, 2006, 60: 1866–1870.
DOI: 10.1016/j.matlet.2005.12.039
Google Scholar
[6]
Q. F. Chang, D. Y. Li, Y. H. Peng, et al. 2007. Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet. International Journal of Machine Tools & Manufacture 47: 436–443.
DOI: 10.1016/j.ijmachtools.2006.06.013
Google Scholar
[7]
K.F. Zhang, D.L. Yin, D.Z. Wu. 2006. Formability of AZ31 magnesium alloy sheets at warm working conditions. International Journal of Machine Tools & Manufacture, 46: 1276–1280.
DOI: 10.1016/j.ijmachtools.2006.01.014
Google Scholar
[8]
T. B. Huang, Y. A. Tsai, F.K. Chen. 2006. Finite element analysis and formability of non-isothermal deep drawing of AZ31B sheets. Journal of Materials Processing Technology, 177: 142-145.
DOI: 10.1016/j.jmatprotec.2006.04.088
Google Scholar
[9]
H. Watari, N. Koga, K. Davey, et al. 2006. Warm deep drawing of wrought magnesium alloy sheets produced by semi-solid roll strip-casting process. International Journal of Machine Tools & Manufacture 46: 1233–1237.
DOI: 10.1016/j.ijmachtools.2006.01.018
Google Scholar
[10]
S. Yoshihara, H. Yamamoto, K. Manabe, et al. 2003. Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique. Journal of Materials Processing Technology 143–144: 612–615.
DOI: 10.1016/s0924-0136(03)00442-4
Google Scholar
[11]
S. Yoshihara, H. Yamamoto, K. Manabe, et al. 2003. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique: circular cup deep drawing process. Journal of Materials Processing Technology, 143–144: 612–615.
DOI: 10.1016/s0924-0136(03)00248-6
Google Scholar
[12]
S. Yoshihara, B.J. MacDonald, H. Nishimura, et al. 2004. Optimization of magnesium alloy stamping with local heating and cooling using the finite element method. Journal of Materials Processing Technology, 153–154: 319–322.
DOI: 10.1016/j.jmatprotec.2004.04.361
Google Scholar
[13]
H. Choi, M. Koc, J. Ni. 2007. A study on the analytical modeling for warm hydro-mechanical deep drawing of lightweight materials. International Journal of Machine Tools & Manufacture 47: 1752-1766.
DOI: 10.1016/j.ijmachtools.2006.12.005
Google Scholar
[14]
H. Choi, M. Koc, J. Ni. 2007. Determination of optimal loading profiles in warm hydroforming of lightweight materials. Journal of Materials Processing Technology, 190: 230–242.
DOI: 10.1016/j.jmatprotec.2007.02.040
Google Scholar
[15]
Z.Y. Zhang. 2007. Study on forming theory and key technology of a novel hydro-mechanical deep drawing[D]. Xi'an:Disseration of Xi'an Jiaotong university.
Google Scholar