Study on Magnesium Alloy Sheets Deep Drawing at Gradient Temperature

Article Preview

Abstract:

A novel hydro-mechanical deep drawing for magnesium alloy sheets at gradient temperature is proposed and studied. The novel process is on the basis of the study in sheet metal forming, the properties of magnesium alloy and the forming characteristics of workpiece in deep drawing. It indicates that the deep drawing operation of magnesium alloy sheet should be done in warm condition due to the poor plasticity of magnesium alloy. In addition, the reasonable temperature gradient of the workpiece is necessary in light on the principle of deep drawing. The essence why the limited drawing ratio can be improved with the new process is demonstrated. The reasonable temperature gradient can be obtained by the fluid pressure control during deep drawing operation. Thus the feasibility of the new technology is verified.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

3046-3050

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. H. Zhang, K. Zhang, Y.C. Xu, et al. 2007. Deep-drawing of magnesium alloy sheets at warm temperatures. Journal of Materials Processing Technology, 185: 147–151.

DOI: 10.1016/j.jmatprotec.2006.03.150

Google Scholar

[2] K. Mori, H. Tsuji. 2007. Cold deep drawing of commercial magnesium alloy sheets. Annals of the CIRP, 56(1): 285-288.

DOI: 10.1016/j.cirp.2007.05.066

Google Scholar

[3] S. Yoshihara, K. Manabe, H. Nishimure. 2005. Effect of blank holder force control in deep-drawing process of magnesium alloy sheet. Journal of Materials Processing Technology, 170: 579–585.

DOI: 10.1016/j.jmatprotec.2005.06.028

Google Scholar

[4] E. Doege, K. Droder. 2001. Sheet metal forming of magnesium wrought alloys —formability and process technology. Journal of Materials Processing Technology, 115: 14–19.

DOI: 10.1016/s0924-0136(01)00760-9

Google Scholar

[5] A. Morsy, K. Manabe. Finite element analysis of magnesium AZ31 alloy sheet in warm deep-drawing process considering heat transfer effect. Materials Letters, 2006, 60: 1866–1870.

DOI: 10.1016/j.matlet.2005.12.039

Google Scholar

[6] Q. F. Chang, D. Y. Li, Y. H. Peng, et al. 2007. Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet. International Journal of Machine Tools & Manufacture 47: 436–443.

DOI: 10.1016/j.ijmachtools.2006.06.013

Google Scholar

[7] K.F. Zhang, D.L. Yin, D.Z. Wu. 2006. Formability of AZ31 magnesium alloy sheets at warm working conditions. International Journal of Machine Tools & Manufacture, 46: 1276–1280.

DOI: 10.1016/j.ijmachtools.2006.01.014

Google Scholar

[8] T. B. Huang, Y. A. Tsai, F.K. Chen. 2006. Finite element analysis and formability of non-isothermal deep drawing of AZ31B sheets. Journal of Materials Processing Technology, 177: 142-145.

DOI: 10.1016/j.jmatprotec.2006.04.088

Google Scholar

[9] H. Watari, N. Koga, K. Davey, et al. 2006. Warm deep drawing of wrought magnesium alloy sheets produced by semi-solid roll strip-casting process. International Journal of Machine Tools & Manufacture 46: 1233–1237.

DOI: 10.1016/j.ijmachtools.2006.01.018

Google Scholar

[10] S. Yoshihara, H. Yamamoto, K. Manabe, et al. 2003. Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique. Journal of Materials Processing Technology 143–144: 612–615.

DOI: 10.1016/s0924-0136(03)00442-4

Google Scholar

[11] S. Yoshihara, H. Yamamoto, K. Manabe, et al. 2003. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique: circular cup deep drawing process. Journal of Materials Processing Technology, 143–144: 612–615.

DOI: 10.1016/s0924-0136(03)00248-6

Google Scholar

[12] S. Yoshihara, B.J. MacDonald, H. Nishimura, et al. 2004. Optimization of magnesium alloy stamping with local heating and cooling using the finite element method. Journal of Materials Processing Technology, 153–154: 319–322.

DOI: 10.1016/j.jmatprotec.2004.04.361

Google Scholar

[13] H. Choi, M. Koc, J. Ni. 2007. A study on the analytical modeling for warm hydro-mechanical deep drawing of lightweight materials. International Journal of Machine Tools & Manufacture 47: 1752-1766.

DOI: 10.1016/j.ijmachtools.2006.12.005

Google Scholar

[14] H. Choi, M. Koc, J. Ni. 2007. Determination of optimal loading profiles in warm hydroforming of lightweight materials. Journal of Materials Processing Technology, 190: 230–242.

DOI: 10.1016/j.jmatprotec.2007.02.040

Google Scholar

[15] Z.Y. Zhang. 2007. Study on forming theory and key technology of a novel hydro-mechanical deep drawing[D]. Xi'an:Disseration of Xi'an Jiaotong university.

Google Scholar