[1]
S. Chowdhury, P. Champagne, and P.J. McLellan, Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review, Science of The Total Environment, Vol. 407, May 2009, pp.4189-4206.
DOI: 10.1016/j.scitotenv.2009.04.006
Google Scholar
[2]
M.M. Huber, S. Korhonen, A. Thomas and U. Gunten, Oxidation of pharmaceuticals during water treatment with chlorine dioxide, Water Research, Vol. 39, Sep. 2005, pp.3607-3617. doi: 10. 1016/j. watres. 2005. 05. 040.
DOI: 10.1016/j.watres.2005.05.040
Google Scholar
[3]
S. Navalon, M. Alvaro, and H. Garcia, Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2, Water Research, Vol. 42, Apr. 2008, pp.1935-1942.
DOI: 10.1016/j.watres.2007.11.023
Google Scholar
[4]
N. Ates, M. Kitis, and U. Yetis, Formation of chlorination by-products in waters with low SUVA-correlations with SUVA and differential UV spectroscopy, Water Research, Vol. 41, Oct. 2007, pp.4139-4148, doi: 10. 1016/j. watres. 2007. 05. 042.
DOI: 10.1016/j.watres.2007.05.042
Google Scholar
[5]
J.L. Weishaar, G.R. Aiken, B.A. Beramaschi, M.S. Fram, R. Fujii and K. Mopper, Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon, Environmental Science & Technology, Vol. 37, Sep. 2003, pp.4702-4708.
DOI: 10.1021/es030360x
Google Scholar
[6]
G. Korshin, C.W.K. Chow, R. Fabris and M. Drikas, Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights, Water Research, Vol. 43, Apr. 2009, pp.1541-1548.
DOI: 10.1016/j.watres.2008.12.041
Google Scholar
[7]
G.V. Korshin, W.W. Wu, M,M. Benjamin and O. Hemingway, Correlations between differential absorbance and the formation of individual DBPs, Water Research, Vol. 36, Jul. 2002, pp.3273-3282, doi: 10. 1016/S0043-1354(02)00042-8.
DOI: 10.1016/s0043-1354(02)00042-8
Google Scholar
[8]
P. Roccaro and F.G.A. Vagliasindi, Differential vs. absolute UV absorbance approaches in studying NOM reactivity in DBPs formation: Comparison and applicability, Water Research, Vol. 43, Feb. 2009, pp.744-750.
DOI: 10.1016/j.watres.2008.11.007
Google Scholar
[9]
APHA, AWWA and WPCF, Standard methods for the examination of water and wastewater. 18th ed., Washington DC, 1995, pp.354-362.
Google Scholar
[10]
Ministry of Health, Standard examination methods for drinking water, 2ed, ed., P.R.C., 2006, PP. 383-386.
Google Scholar
[11]
H. Zhou, X.J. Zhang and Z.S. Wang, Occurrence of Haloacetic Acids in Drinking Water in Certain Cities of China, Biomedical and exvironmental sciences, Vol. 17, Sep. 2004, pp.299-308.
Google Scholar
[12]
G.V. Korshin, M.M. Benjamin, H.S. Chang and H. Gallard, Examination of NOM Chlorination Reactions by Conventional and Stop-Flow Differential Absorbance Spectroscopy, Environmental Science & Technology, Vol. 41, Apr. 2007, pp.2776-2781.
DOI: 10.1021/es062268h
Google Scholar
[13]
C. W. Li, M.M. Benjamin and G.V. Korshin, Use of UV Spectroscopy To Characterize the Reaction between NOM and Free Chlorine, Environmental Science & Technology, Vol. 34, May 2000, pp.2570-2575, doi: 10. 1021/es990899o.
DOI: 10.1021/es990899o
Google Scholar
[14]
P.K. Egeberg, A.A. Christy and M. Eikenes, The molecular size of natural organic matter (NOM) determined by diffusivimetry and seven other methods, Water Research, Vol. 36, Feb. 2002, pp.925-932, doi: 10. 1016/S0043-1354(01)00313-X.
DOI: 10.1016/s0043-1354(01)00313-x
Google Scholar