Application of Time-Frequency Distributions to the Blind Source Separation of Mechanical Fault Signals

Abstract:

Article Preview

In this study, blind source separation (BSS) method was applied to separate the multi-channel fault vibration signals generated by a rotor. As the signals were non-stationary, an algorithm based on spatial time-frequency distributions was applied to the experimental vibration signals to obtain the non-stationary vibration sources that were mutually independent. Further, AR modeling estimates of these sources were calculated with BURG method. A neural network was applied to the AR modeling parameters to perform the fault classification. The separation results of an experiment on a rotor’s multi-fault show that this method is feasible for fault diagnosis.

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Edited by:

Wu Fan

Pages:

395-399

DOI:

10.4028/www.scientific.net/AMR.383-390.395

Citation:

Z. H. Hao et al., "Application of Time-Frequency Distributions to the Blind Source Separation of Mechanical Fault Signals", Advanced Materials Research, Vols. 383-390, pp. 395-399, 2012

Online since:

November 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.