Adaptive Full State Hybrid Function Projective Lag Synchronization in Chaotic Continuous-Time System

Article Preview

Abstract:

Based on the Lyapunov stability theory, an adaptive full state hybrid function projective lag synchronization (FSHFPLS) scheme is investigated in chaotic continuous-time system, and a unified adaptive controller and parameters update law are designed for achieved the projective lag synchronization up to a desired scaling function. In addition, a scheme for secure communication is presented. Numerical simulations are performed to verify and illustrate the analytical results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

4169-4174

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol. 65, 1990, p.821–824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] G. Chen, X. Dong, From chaos to order, World Scientific, Singapore, (1998).

Google Scholar

[3] J. H. Park, O. M. Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons and Fractals, vol. 23, 2005, p.495–501.

DOI: 10.1016/j.chaos.2004.05.023

Google Scholar

[4] L. Q. Chen, A general formalism for synchronization in finite dimensional dynamical systems, Chaos, Solitons and Fractals, vol. 19, 2004, p.1239–1242.

DOI: 10.1016/s0960-0779(03)00325-4

Google Scholar

[5] J. Lu, X. Wu and J. Lü, Synchronization of a unified chaotic system and the application in secure communication, Phys. Lett. A., vol. 305, 2002, p.365–370.

DOI: 10.1016/s0375-9601(02)01497-4

Google Scholar

[6] J. G. Zhang, X. F. Li, Y. D. Chu and Y. X. Chang, Bifurcations Hopf, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system, Chaos, Solitons and Fractals, vol. 39, 2009, p.2150–2168.

DOI: 10.1016/j.chaos.2007.06.131

Google Scholar

[7] M. Chen, Z. Han, Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos, Solitons and Fractals, vol. 17, 2003, p.709–716.

DOI: 10.1016/s0960-0779(02)00487-3

Google Scholar

[8] J. A. K. Suykens, P. F. Curran and L. O. Chua, Master-slave synchronization using dynamic output feedback, Int. J. Bifurcat. Chaos., vol. 7, 1997, p.671–679.

DOI: 10.1142/s0218127497000467

Google Scholar

[9] Z. M. Ge, T. C. Yu and Y. S. Chen, Chaos synchronization of a horizontal platform system,J. Sound. Vib., vol. 268, 2003, p.731–749.

DOI: 10.1016/s0022-460x(02)01607-3

Google Scholar

[10] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep., vol. 366, 2002, pp.1-101.

DOI: 10.1016/s0370-1573(02)00137-0

Google Scholar

[11] Y. D. Chu, J. G. Zhang, X. F. Li, Y. X. Chang and G. W. Luo, Chaos and chaos synchronization for a non-autonomous rotational machine systems, Nonlinear Analysis: Real World Applications, vol. 9, 2008, p.1378–1393.

DOI: 10.1016/j.nonrwa.2007.03.009

Google Scholar

[12] M.G. Rosenblum, A.S. Pikovsky and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., vol. 76, 1996, p.1804–1807.

DOI: 10.1103/physrevlett.76.1804

Google Scholar

[13] N.F. Rulkov, M.M. Sushchik and L.S. Tsimring, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E., vol. 51, 1995, p.980–994.

DOI: 10.1103/physreve.51.980

Google Scholar

[14] M.G. Rosenblum, A.S. Pikovsky and J. Kurth, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., vol. 78, 1997, p.4193–4196.

DOI: 10.1103/physrevlett.78.4193

Google Scholar

[15] R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., vol. 82, 1999, p.3042–3045.

DOI: 10.1103/physrevlett.82.3042

Google Scholar

[16] D. Xu, Control of projective synchronization in chaotic systems, Phys. Rev. E., vol. 63, 2001, p.27201–27204.

Google Scholar

[17] D. Xu, Z. Li and S.R. Bishop, Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos, vol. 11, 2001, p.439–442.

DOI: 10.1063/1.1380370

Google Scholar

[18] D. Xu, C.Y. Chee, Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys. Rev. E., vol. 66, 2002, 046218.

DOI: 10.1103/physreve.66.046218

Google Scholar

[19] Z. Li, D. Xu, Stability criterion for projective synchronization in three-dimensional chaotic systems, Phys. Lett. A., vol. 282, 2001, p.175–179.

DOI: 10.1016/s0375-9601(01)00185-2

Google Scholar

[20] D. Xu, W.L. Ong and Z. Li, Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension, Phys. Lett. A., vol. 305, 2002, p.167–172.

DOI: 10.1016/s0375-9601(02)01445-7

Google Scholar

[21] G. Wen, D. Xu, Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos Solitons and Fractals, vol. 26, 2002, p.71–77.

DOI: 10.1016/j.chaos.2004.09.117

Google Scholar

[22] J. Yan, C. Li, Generalized projective synchronization of a unified chaotic system, Chaos Solitons and Fractals, vol. 26, 2005, p.1119–1124.

DOI: 10.1016/j.chaos.2005.02.034

Google Scholar

[23] J.H. Park, Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos Solitons and Fractals, vol. 34, 2007, p.1552–1559.

DOI: 10.1016/j.chaos.2006.04.047

Google Scholar

[24] G.H. Li, Modified projective synchronization of chaotic system, Chaos Solitons and Fractals, vol. 32, 2007, p.1786–1790.

DOI: 10.1016/j.chaos.2005.12.009

Google Scholar

[25] Y. Chen, X. Li, Function projective synchronization between two identical chaotic systems, Internat. J. Modern Phys. C., vol. 18, 2007, p.883–888.

DOI: 10.1142/s0129183107010607

Google Scholar

[26] M. F. Hu, Z. Y. Xu, R. Zhang and A. H. Hu, Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order, Phys. Lett. A., vol. 365, 2007, p.315–327.

DOI: 10.1016/j.physleta.2007.01.038

Google Scholar

[27] G. H. Li, Projective lag synchronization in chaotic systems, Chaos Solitons and Fractals, vol. 41, 2009, p.2630–2634.

DOI: 10.1016/j.chaos.2008.09.042

Google Scholar

[28] Q. J. Zhang, J. A. Lu, Full state hybrid lag projective synchronization in chaotic(hyperchaotic) systems, Phys. Lett. A., vol. 372, 2008, p.1416–1421.

DOI: 10.1016/j.physleta.2007.09.051

Google Scholar

[29] C. F. Feng, Y. Zhang, J. T. Sun, et al, Generalized projective synchronization in time-delayed chaotic systems, Chaos Solitons and Fractals, vol. 38, 2008, p.743–747.

DOI: 10.1016/j.chaos.2007.01.037

Google Scholar

[30] X. Tang, J. Lu and W. Zhang, The FPS of chaotic system using backstepping design, China J. Dynam. Control, vol. 5, 2007, p.216–219.

Google Scholar

[31] H. Y. Du, Q. S. Zeng, C. H. Wang, et al, Function projective synchronization in coupled chaotic systems, Nonlinear Analysis: Real World Applications, vol. 11, 2010, p.705–712.

DOI: 10.1016/j.nonrwa.2009.01.016

Google Scholar

[32] H. Y. Du, Q. S. Zeng, N. Lu, et al, A general method for modified function projective lag synchronization in chaotic systems, Phys. Lett. A., vol. 374, 2010, p.1493–1496.

DOI: 10.1016/j.physleta.2010.01.058

Google Scholar

[33] R. B. Leipnik,T. A. Newton, Double strange attractors in rigid body motion with linear feedback control, Phys. Lett. A., vol. 86, 1981, pp.63-67.

DOI: 10.1016/0375-9601(81)90165-1

Google Scholar