[1]
L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol. 65, 1990, p.821–824.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[2]
G. Chen, X. Dong, From chaos to order, World Scientific, Singapore, (1998).
Google Scholar
[3]
J. H. Park, O. M. Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons and Fractals, vol. 23, 2005, p.495–501.
DOI: 10.1016/j.chaos.2004.05.023
Google Scholar
[4]
L. Q. Chen, A general formalism for synchronization in finite dimensional dynamical systems, Chaos, Solitons and Fractals, vol. 19, 2004, p.1239–1242.
DOI: 10.1016/s0960-0779(03)00325-4
Google Scholar
[5]
J. Lu, X. Wu and J. Lü, Synchronization of a unified chaotic system and the application in secure communication, Phys. Lett. A., vol. 305, 2002, p.365–370.
DOI: 10.1016/s0375-9601(02)01497-4
Google Scholar
[6]
J. G. Zhang, X. F. Li, Y. D. Chu and Y. X. Chang, Bifurcations Hopf, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system, Chaos, Solitons and Fractals, vol. 39, 2009, p.2150–2168.
DOI: 10.1016/j.chaos.2007.06.131
Google Scholar
[7]
M. Chen, Z. Han, Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos, Solitons and Fractals, vol. 17, 2003, p.709–716.
DOI: 10.1016/s0960-0779(02)00487-3
Google Scholar
[8]
J. A. K. Suykens, P. F. Curran and L. O. Chua, Master-slave synchronization using dynamic output feedback, Int. J. Bifurcat. Chaos., vol. 7, 1997, p.671–679.
DOI: 10.1142/s0218127497000467
Google Scholar
[9]
Z. M. Ge, T. C. Yu and Y. S. Chen, Chaos synchronization of a horizontal platform system,J. Sound. Vib., vol. 268, 2003, p.731–749.
DOI: 10.1016/s0022-460x(02)01607-3
Google Scholar
[10]
S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep., vol. 366, 2002, pp.1-101.
DOI: 10.1016/s0370-1573(02)00137-0
Google Scholar
[11]
Y. D. Chu, J. G. Zhang, X. F. Li, Y. X. Chang and G. W. Luo, Chaos and chaos synchronization for a non-autonomous rotational machine systems, Nonlinear Analysis: Real World Applications, vol. 9, 2008, p.1378–1393.
DOI: 10.1016/j.nonrwa.2007.03.009
Google Scholar
[12]
M.G. Rosenblum, A.S. Pikovsky and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., vol. 76, 1996, p.1804–1807.
DOI: 10.1103/physrevlett.76.1804
Google Scholar
[13]
N.F. Rulkov, M.M. Sushchik and L.S. Tsimring, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E., vol. 51, 1995, p.980–994.
DOI: 10.1103/physreve.51.980
Google Scholar
[14]
M.G. Rosenblum, A.S. Pikovsky and J. Kurth, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., vol. 78, 1997, p.4193–4196.
DOI: 10.1103/physrevlett.78.4193
Google Scholar
[15]
R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., vol. 82, 1999, p.3042–3045.
DOI: 10.1103/physrevlett.82.3042
Google Scholar
[16]
D. Xu, Control of projective synchronization in chaotic systems, Phys. Rev. E., vol. 63, 2001, p.27201–27204.
Google Scholar
[17]
D. Xu, Z. Li and S.R. Bishop, Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos, vol. 11, 2001, p.439–442.
DOI: 10.1063/1.1380370
Google Scholar
[18]
D. Xu, C.Y. Chee, Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys. Rev. E., vol. 66, 2002, 046218.
DOI: 10.1103/physreve.66.046218
Google Scholar
[19]
Z. Li, D. Xu, Stability criterion for projective synchronization in three-dimensional chaotic systems, Phys. Lett. A., vol. 282, 2001, p.175–179.
DOI: 10.1016/s0375-9601(01)00185-2
Google Scholar
[20]
D. Xu, W.L. Ong and Z. Li, Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension, Phys. Lett. A., vol. 305, 2002, p.167–172.
DOI: 10.1016/s0375-9601(02)01445-7
Google Scholar
[21]
G. Wen, D. Xu, Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos Solitons and Fractals, vol. 26, 2002, p.71–77.
DOI: 10.1016/j.chaos.2004.09.117
Google Scholar
[22]
J. Yan, C. Li, Generalized projective synchronization of a unified chaotic system, Chaos Solitons and Fractals, vol. 26, 2005, p.1119–1124.
DOI: 10.1016/j.chaos.2005.02.034
Google Scholar
[23]
J.H. Park, Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos Solitons and Fractals, vol. 34, 2007, p.1552–1559.
DOI: 10.1016/j.chaos.2006.04.047
Google Scholar
[24]
G.H. Li, Modified projective synchronization of chaotic system, Chaos Solitons and Fractals, vol. 32, 2007, p.1786–1790.
DOI: 10.1016/j.chaos.2005.12.009
Google Scholar
[25]
Y. Chen, X. Li, Function projective synchronization between two identical chaotic systems, Internat. J. Modern Phys. C., vol. 18, 2007, p.883–888.
DOI: 10.1142/s0129183107010607
Google Scholar
[26]
M. F. Hu, Z. Y. Xu, R. Zhang and A. H. Hu, Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order, Phys. Lett. A., vol. 365, 2007, p.315–327.
DOI: 10.1016/j.physleta.2007.01.038
Google Scholar
[27]
G. H. Li, Projective lag synchronization in chaotic systems, Chaos Solitons and Fractals, vol. 41, 2009, p.2630–2634.
DOI: 10.1016/j.chaos.2008.09.042
Google Scholar
[28]
Q. J. Zhang, J. A. Lu, Full state hybrid lag projective synchronization in chaotic(hyperchaotic) systems, Phys. Lett. A., vol. 372, 2008, p.1416–1421.
DOI: 10.1016/j.physleta.2007.09.051
Google Scholar
[29]
C. F. Feng, Y. Zhang, J. T. Sun, et al, Generalized projective synchronization in time-delayed chaotic systems, Chaos Solitons and Fractals, vol. 38, 2008, p.743–747.
DOI: 10.1016/j.chaos.2007.01.037
Google Scholar
[30]
X. Tang, J. Lu and W. Zhang, The FPS of chaotic system using backstepping design, China J. Dynam. Control, vol. 5, 2007, p.216–219.
Google Scholar
[31]
H. Y. Du, Q. S. Zeng, C. H. Wang, et al, Function projective synchronization in coupled chaotic systems, Nonlinear Analysis: Real World Applications, vol. 11, 2010, p.705–712.
DOI: 10.1016/j.nonrwa.2009.01.016
Google Scholar
[32]
H. Y. Du, Q. S. Zeng, N. Lu, et al, A general method for modified function projective lag synchronization in chaotic systems, Phys. Lett. A., vol. 374, 2010, p.1493–1496.
DOI: 10.1016/j.physleta.2010.01.058
Google Scholar
[33]
R. B. Leipnik,T. A. Newton, Double strange attractors in rigid body motion with linear feedback control, Phys. Lett. A., vol. 86, 1981, pp.63-67.
DOI: 10.1016/0375-9601(81)90165-1
Google Scholar