A Review of some Intelligent Optimization Algorithms Applied to Intelligent Transportation System

Article Preview

Abstract:

This paper attempts to summarize the findings of a large number of research papers concerning the application of intelligent optimization algorithms to ITS. A brief introduction to intelligence is included, for the benefit of readers unfamiliar with the techniques. Then it put emphasis on three kinds of intelligent optimization application in ITS, including ANN, GA and PSO. It should be noted first that each of the three subjects can prolong to a long paper, and second that there are also some other intelligent optimization method, such as fuzzy logic, ant colony, shuffle frog-leaping algorithm et.al.. On the constraint of time and paper volume, we only analyzed those three algorithms, their state-and-the-art use in ITS, and their future development trend.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

5717-5723

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. J. Russell, P. N. Russell, C. Eberhart, Y.H. Shi, Computational Intelligence: Concepts to Implementation [M]., Posts & Telecom Press, pp.2-3.

Google Scholar

[2] Orvig, Artificial Intelligence: A Modern Approach[M]., Tsinghua Univ. Press. Peking, (2006).

Google Scholar

[3] J. A. Feldman, Neural networks, artificial intelligence and computational reality[J]., Computers in Industry, vol. 14, no. 1-3, May, 1990, pp.145-148.

DOI: 10.1016/0166-3615(90)90115-6

Google Scholar

[4] Mark Dougherty, A review of neural network applied to transport[J]. , Transpn. Res. -C, 1995, vol. 3, no. 4, pp.247-260.

Google Scholar

[5] Nahatsuji T. , Terutoshi K, Development of a self- organizing traffic control system using neural network models., Transportation Research Record, 1991, vol. 1324, p.131~145.

Google Scholar

[6] M. Papageorgiou, A. Messmer, J. Azema and D. Drewanz, A neural network approach to freeway network traffic control[J]., Control Eng. Practice, 1995, vol. 3, no. 12, pp.1719-1726.

DOI: 10.1016/0967-0661(95)00184-v

Google Scholar

[7] C.H. Wei, Analysis of artificial neural network models for free ramp metering control[J]., Artificial Intelligence in Engineering, 2001, vol. 15, pp.241-252.

DOI: 10.1016/s0954-1810(01)00019-x

Google Scholar

[8] G. Lyons, J. Hunt, F. McLeod, A neural model for enhanced operation of midblock signaled pedestrian crossings[J]., European Journal of Operational Research , 2001, vol. 129, pp.346-354.

DOI: 10.1016/s0377-2217(00)00232-0

Google Scholar

[9] Abdulhai, B., Porwal, H., W. Recker, Short-term traffic flow prediction using neuro-genetic algorithms [J]., ITS Journal, 2002, vol. 7, p.3–41.

DOI: 10.1080/10248070212011

Google Scholar

[10] Guoqiang Zhang, B. Eddy Patuwo, Michael Y. Hu, Forecasting with artificial neural networks: The State of the art[J]., International Journal of Forecasting, 1998, (14), pp.35-62.

DOI: 10.1016/s0169-2070(97)00044-7

Google Scholar

[11] S.Y. Yun,S. Namkoong, J.H. Rho, S.W. Shin, J.U. Choi, A performance evaluation of neural network models in traffic volume forecasting[J]. , Mathl. Comput. Modelling, 1998, vol. 27, no. 9-11, pp.293-310.

DOI: 10.1016/s0895-7177(98)00065-x

Google Scholar

[12] H. R. Kirby, S. M. Watson, M. S. Dougherty, Should we use neural networks or statistical models for short-term motorway traffic forecsting[J]. , International Journal of Forecasting, 1997, vol. 13, pp.43-50.

DOI: 10.1016/s0169-2070(96)00699-1

Google Scholar

[13] Mark S. Dougherty, Mark R. Cobbett, Short-term inter-urban traffic forecasts using neural networks[J]., International Journal of Forecasting , 1997, vol. 13, pp.21-31.

DOI: 10.1016/s0169-2070(96)00697-8

Google Scholar

[14] F.X. Qiao, H. Yang, William H.K. Lam, Intelligent simulation and prediction of traffic flow dispersion[J]., Transportation research Part B, 2001, (35), pp.843-863.

DOI: 10.1016/s0191-2615(00)00024-2

Google Scholar

[15] H. Dia"An object-oriented neural network approach to short-term traffic forecasting[J]. " European Journal of Operational Research, 2001, (131), pp.253-261.

DOI: 10.1016/s0377-2217(00)00125-9

Google Scholar

[16] S. Huang, Adel W. Sadek, A novel forecasting approach inspired by human memory: The example of short-term traffic volume forecasting[J], Transportation Research Part C, 2009, (17), pp.510-525.

DOI: 10.1016/j.trc.2009.04.006

Google Scholar

[17] X.D. Zang, The shor-term traffic volume forecasting for urban interchange based on RBF artificial neural networks[A], International Conference on Mechatronics and Automation[C]. Aug. 2009, pp.2607-2611.

DOI: 10.1109/icma.2009.5246693

Google Scholar

[18] M. Fallah-Tafti, The application of artificial neural networks to anticipate the average journey time of traffic in the vicinity of merges[J],. Knowledge-based Sysems, 2001, (14), pp.203-211.

DOI: 10.1016/s0950-7051(01)00098-3

Google Scholar

[19] S. Fogen Kalyoncuoglu, M. Tigdemir, An alternative approach for modeling and simulation of traffic data: artificial neural networks[J],. Simulation Modelling Practice and Theory, 2004, (12), pp.351-362.

DOI: 10.1016/j.simpat.2004.04.002

Google Scholar

[20] C. Ledoux, An urban traffic flow model integrating neural networks[J],. Transp. Res. -C, 1997, Vol. 5, No. 5, pp.287-300.

Google Scholar

[21] H. Berk Celikoglu, H. Kerem Cigizoglu, Public transportation trip flow modeling with generalized regression neural networks[J],. Advances in Engineering Software, 2007, (38), pp.71-79.

DOI: 10.1016/j.advengsoft.2006.08.003

Google Scholar

[22] H. Berk Celikoglu, H. Kerem Cigizoglu, Modelling public transport trips by radial basis function neural networks[J],. Mathematical and Computer Modelling, 2007, (45), pp.480-489.

DOI: 10.1016/j.mcm.2006.07.002

Google Scholar

[23] D. Srinivasan, X. Jin, R. L. Cheu, Adaptive neural network models for automatic incident detection on freeways[J],. Neurocomputing, 2005, (64), pp.473-496.

DOI: 10.1016/j.neucom.2004.12.001

Google Scholar

[24] C.H., Wei, Y. Lee, Sequential forecast of incident duration using artificial neural network models[J],. Accident Analysis and Prevention, 2007, (39), pp.944-954.

DOI: 10.1016/j.aap.2006.12.017

Google Scholar

[25] Ray R. Hashemi, Louis A. Le Blanc, Conway T. Rucks, and Angela Shearry, A neural network for transportation safety modeling[J],. Expert Systems with Applications. 1995, Vol. 9, No. 3, pp.247-256.

DOI: 10.1016/0957-4174(95)00002-q

Google Scholar

[26] B.M. Baker, M.A. Ayechew, A genetic algorithm for the vehicle routing problem[J],. Computers and Operations Research, 2003, 30 (5), 787–800.

DOI: 10.1016/s0305-0548(02)00051-5

Google Scholar

[27] B. J., M. Barkaoui, A hybrid genetic algorithm for the capacitated vehicle routing problem[A],. Proceedings of the Genetic and Evolutionary Computation Conference[C], 2003, Chicago, p.646–656.

DOI: 10.1007/3-540-45105-6_80

Google Scholar

[28] O. Gundogdu, M. Gokdag, F. Yuksel, A traffic noise prediction method based on vehicle composition using genetic algorithms [J],. Applied Acoustics, 2005, (66): 799-809.

DOI: 10.1016/j.apacoust.2004.11.003

Google Scholar

[29] X.B. Hu, E. D. Paolo, An efficient genetic algorithm with uniform crossover for air traffic control[J],. Computer & Operations Research , 2009, (36): 245-259.

DOI: 10.1016/j.cor.2007.09.005

Google Scholar

[30] B. Chu, D. Kim, D. Hong, et. al., GA-based fuzzy controller design for tunnel ventilation systems[J],. Automation in Construction, 2008, (17), pp.130-136.

DOI: 10.1016/j.autcon.2007.05.011

Google Scholar

[31] F.Z. Zhang, X.J. Cao, D.K. Yang. Intelligent scheduling of public traffic vehicles based on a hybrid genetic algorithm [J]. Tsinghua Science and Technology, 2008, Vol. 13, No. 5, pp.625-631.

DOI: 10.1016/s1007-0214(08)70103-2

Google Scholar

[32] S. Rahmani, S.M. Mousavi, M.J. Kamali, Modeling of road-traffic noise with the use of genetic algorithm[J],. Applied soft computing, 2010, In press.

DOI: 10.1016/j.asoc.2010.01.022

Google Scholar

[33] H. Ceylan, Michael G.H. Bell, Traffic signal timing optimization based on genetic algorithm approach, including drivers'routing[J],. Transportation Research Part B, 2004, (38), pp.329-342.

DOI: 10.1016/s0191-2615(03)00015-8

Google Scholar

[34] J. Kennedy, R. Eberhart, Particle swarm optimization,. Proceedings of 1995 IEEE International Conference on Neural Networks , 1995(4), p.1942–(1948).

Google Scholar

[35] J. Kennedy, R.A. Eberhart, discrete binary version of the particle swarm algorithm,. Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997(5), p.4104–4108.

DOI: 10.1109/icsmc.1997.637339

Google Scholar

[36] J. Kennedy, R. Eberhart, Y. Shi,. Swarm Intelligence. Morgan Kaufmann Publisher, San Francisco, (2001).

Google Scholar

[37] Y. Marinakis, A hybrid particle swarm optimization algorithm for the vehicle routing problem[J],. Engineering Applications of Artificial Intelligence (2010), In Press, doi: 10. 1016/ j. engappai. 2010. 02. 002.

DOI: 10.1016/j.engappai.2010.02.002

Google Scholar

[38] Y. Peng, H.Y. Zhu, Research on vehicle routing problem with stochastic demand and PSO-DP algorithm with inver-over operator[J],. System Engineering-Theory& Practice, 2008, Vol. 28, Issue 10, pp.76-81.

DOI: 10.1016/s1874-8651(10)60003-8

Google Scholar

[39] J. M Hu, J.Y. Song, X. J Kang, M. Ch. Zhang. A study of Particle swarm optimization in urban traffic surveillance system[A],. IMACS Multiconference on CESA, Oct. 4-6, 2006, Beijing China, p.2056-(2061).

DOI: 10.1109/cesa.2006.313652

Google Scholar

[40] X.R. Liang, Y. K Fan, T. Jiang. Application of PSO algorithm to coordinated ramp control[A],. Proceedings of the Eighth International Conference on Machine Learning and Cybernetics[C], Baoding, July, 2009, pp.1712-1716.

DOI: 10.1109/icmlc.2009.5212350

Google Scholar

[41] Z. Qin, Z.P. Fan, X.D. Zang, H.W. Gong, Approach of intersection signal control based on PSO[A],. CCDC, 2009, pp.4221-4225.

Google Scholar

[42] Y. Wei, Qing Shao, Y. Han and B.Q. Fan. Intersection signal control approach based on PSO and simulation[A],. The Second International Conference on Genetic and Evolutionary Computing[C], 2008, pp.277-280.

DOI: 10.1109/wgec.2008.124

Google Scholar

[43] L.G. Zhang, Y. Y Zhong, Z.L. Li, Y.Z. Chen, PSO-based optimization for isolated intersections signal timing and simulation[A], the Proceedings of the 7th International Conference on Machine Learning and Cybernectics, Kunming, 12-15, July, 2008, pp.993-996.

DOI: 10.1109/icmlc.2008.4620549

Google Scholar

[44] J. Chen, L.H. Xu, Road-junction traffic signal timing optimization by an adaptive particle swarm algorithm[A],. ICARCV[C], (2006).

DOI: 10.1109/icarcv.2006.345348

Google Scholar

[45] A. W. Mohemmed, N. Ch. Sahoo, T. K. Geok. Sovling shortest path problem using particle swarm optimization[J],. Applied Soft Computing, 2008, (8), pp.1643-1653.

DOI: 10.1016/j.asoc.2008.01.002

Google Scholar