[1]
Aarne Halme, Torsten Schönberg, Yan Wang, Motion control of a spherical mobile robot, IEEE International International Workshop on Advanced Motion Control, 1996: 100-106.
DOI: 10.1109/amc.1996.509415
Google Scholar
[2]
Shourov Bhattacharya, Sunil K. Agrawal, Design, Experiments and Motion Planning of a Spherical Rolling Robot, IEEE International Conference on Robotics and Automation, 2000: 1027-1012.
DOI: 10.1109/robot.2000.844763
Google Scholar
[3]
Carlo Camicia, Fahio Conticelli, Antonio Bicchi, Nonholonomic Kinematics and Dynamics of the Sphericle, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000: 806-810.
DOI: 10.1109/iros.2000.894703
Google Scholar
[4]
Alessia Marigo, Antonio Bicchi, A local-local planning algorithm for rolling objects, IEEE International Conference on Robotics and Automation, 2002: 1759-1764.
DOI: 10.1109/robot.2002.1014796
Google Scholar
[5]
Mukherjee Ranjan, Tuhin Das, Feedback Stabilization of a Spherical Mobile Robot, IEEE International Conference on Intelligent Robots and Systems, 2002: 2154-2162.
DOI: 10.1109/irds.2002.1041586
Google Scholar
[6]
Tuhin Kumar Das, Feedback stabilization of the rolling sphere: An intractable nonholonomic system, PhD thesis, Michigan State University. Dept. of Mechanical Engineering, 2002(9).
Google Scholar
[7]
Vrunda A. Joshi, Ravi N. Banavar, Rohit Hippalgaonkar, Design and analysis of a spherical mobile robot, Mechanism and Machine Theory 2010, 45(2): 130–136.
DOI: 10.1016/j.mechmachtheory.2009.04.003
Google Scholar
[8]
Qiang Zhan, Yao Cai, Zengbo Liu, Near-Optimal Trajectory Plan-ning of a Spherical Mobile Robot for Environment Exploration, IEEE Conference on Robotics, Automation and Mechatronics, 2008: 84-89.
DOI: 10.1109/ramech.2008.4681380
Google Scholar
[9]
Qiang Zhan, Tingzhi Zhou, Ming Chen, Sanlong Cai, Dynamic Trajectory Planning of a Spherical Mobile Robot, IEEE Conference on Robotics, Automation and Mechatronics, 2006: 714-719.
DOI: 10.1109/ramech.2006.252705
Google Scholar
[10]
Zhan Qiang, Liu Zengbo, Cai Yao, A back-stepping Based Traj-ectory Tracking Control for a Non-chained Nonholonomic Spherical Robot, Chinese Journal of Aeronautics, 2008, 21(5): 472-480.
DOI: 10.1016/s1000-9361(08)60061-8
Google Scholar
[11]
Zheng Minghui, Zhan Qiang, Liu Jinkun, Cai Yao, Control of a Spherical Robot Path Following: Based on Nonholonomic Kinematics and Dynamics, , unpublished.
Google Scholar
[12]
D.S. Broomhead and D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems 1988, 2: 321-355.
Google Scholar
[13]
Gang Feng, A compensating scheme for robot tracking based on neural networks, Robotics and Autonomous Systems, 1995, 15(3): 199-206.
DOI: 10.1016/0921-8890(95)00023-9
Google Scholar
[14]
Jorge I. Arciniegas, Adel H. Eltimsahy, Krzysztof J. Cios, Neural-networks-based adaptive control of flexible robotic arms, Neurocomputing, 1997, 17(3-4): 141-157.
DOI: 10.1016/s0925-2312(97)00037-4
Google Scholar
[15]
S.K. Tso, Y.H. Fung, N.L. Lin, Analysis and real-time implement-ation of a radial-basis-function neural-network compensator for high-performance robot manipulators, Mechatronics, 2000, 10(1-2): 265-287.
DOI: 10.1016/s0957-4158(99)00058-6
Google Scholar
[16]
V. David S' anchez A, Searching for a solution to the automatic RBF network design problem, Neurocomputing, 2002, 42(1-4): 147–170.
DOI: 10.1016/s0925-2312(01)00600-2
Google Scholar
[17]
Huang Sunan, Tan Kok Kiong and Lee Tong Heng, Adaptive neural network algorithm for control design of rigid-link electrically driven robots, Neurocomputing , 2008, 71(4-6): 885–894.
DOI: 10.1016/j.neucom.2007.02.012
Google Scholar