Analysis and Optimization of ORC for Low-Temperature Waste Heat Power Generation

Article Preview

Abstract:

This paper presents energy analysis, thermodynamic calculation and exergy analysis for waste heat power generation system of Organic Rankine Cycle based on the first and second laws of thermodynamics. In order to improve system performance, for low-temperature waste heat of 120°C and R245fa organic working fluid, using Aspen Plus software conducted simulation, optimization and improvement. Results from these analyses show that decreasing the expander inlet temperature, increasing inlet pressure of the expander, and adding regenerative heater can increase thermal and exergy efficiencies, at the same time reduce system irreversibility.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

6614-6620

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Somayaji. First and second law analysis of Oragnic Rankine Cycle, [D]. Amecia: Mississippi State University . (2008).

Google Scholar

[2] Gurgenci, H. Performance of Power Plants with Organic Rankine Cycles under Part-Load and Off-Design Conditions,. Solar Energy, 36, 1, 1986, pp.45-52.

DOI: 10.1016/0038-092x(86)90059-9

Google Scholar

[3] Donghong Wei, Xuesheng Lu, Zhen Lu, Jianming Gu. ynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery,. Applied Thermal Engineering, 28 (2008), 1216–1224.

DOI: 10.1016/j.applthermaleng.2007.07.019

Google Scholar

[4] G. Kosmadakis, D. Manolakos, S. Kyritsis, G. Papadakis. "Comparative thermodynamic study of refrigerants to select the best for use in the high-temperature stage of a two-stage organic Rankine cycle for RO desalination. Desalination. 243 (2009).

DOI: 10.1016/j.desal.2008.04.016

Google Scholar

[5] X.D. Wang, L. Zhao, J.L. Wang, W.Z. Zhang, X.Z. Zhao, W. Wu. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa,. Solar Energy, in press.

DOI: 10.1016/j.solener.2009.11.004

Google Scholar

[6] Liu, B. T, Chen, K. H, Wang, C.C. Effect of Working fluids on Organic Rankine Cycle for Waste Heat Recovery., Energy, 29, 2004, p.1207–1217.

DOI: 10.1016/j.energy.2004.01.004

Google Scholar

[7] Maizza, V., and Maizza, A. Unconventional working fluids in organic rankine-cycles for waste energy recovery systems., Applied Thermal Engineering, 21, 3, 2001, pp.381-390.

DOI: 10.1016/s1359-4311(00)00044-2

Google Scholar

[8] P. J. Mago, L.M. Chamra, K. Srinivasan, and C. Somayaji. An examination of regenerative organic Rankine cycles using dry fluids, [J]. Applied Thermal Engineering. 28 (2008) 998-1007, doi: 10. 1016/j. applthermaleng. 2007. 06. 025, (2008).

DOI: 10.1016/j.applthermaleng.2007.06.025

Google Scholar

[9] Somayaji, C., Mago, P. J., and Chamra, L. M. Second Law Analysis and Optimization of Organic Rankine Cycles., Proceedings of IMECE2006 ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, Illinois, USA.

DOI: 10.1115/power2006-88061

Google Scholar

[10] Hung, T.C., Shai, T.Y., and Wang, S.K. A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-grade Waste Heat., Energy, 22, 7, 1997, pp.661-667.

DOI: 10.1016/s0360-5442(96)00165-x

Google Scholar