[1]
J.C. Lin, K. C. Peng, T.Y. Yeh, S.L. Lee, On the structure and characterization of Al, Sc-Co-doped ZnO-films varying with 0–2. 37 wt. % Sc contents, Thin Solid Films, Vol. 517, p.4715–4719, March 2009 doi: 10. 1016/j. tsf. 2009. 03. 022.
DOI: 10.1016/j.tsf.2009.03.022
Google Scholar
[2]
T. Minami, S. Suzuki, T. Miyata, Transparent conducting impurity-co-doped ZnO: Al thin films prepared by magnetron sputtering, Thin Solid Films, Vol. 53, p.398–399, November 2001, doi: 10. 1016/S0040-6090(01)01303-7.
DOI: 10.1016/s0040-6090(01)01303-7
Google Scholar
[3]
M. J. Cooke, R. A. Heinecke, R. C. Stern and J. W. C. Maes, LPCVD of Aluminum and Al-Si Alloys for Semiconductor Metallization, Solid State Technol., Vol. 25 pp.62-65, December (1982).
Google Scholar
[4]
K. Sugai, H. Okabayashi, S. Kishida, and T. Shinzawa, Titanium-containing hydrofluoric acid pretreatment for aluminum chemical vapor deposition, Thin Solid Films, Vol. 280, pp.142-146, July 1996, doi: 10. 1016/0040-6090(95)08207-7.
DOI: 10.1016/0040-6090(95)08207-7
Google Scholar
[5]
A. E. Kaloyeros, M. E. Thomas, J. Norman, and J. J. Sullivan, Aluminum interconnects for ULSI: The CVD route, Semicond. Int., Vol. 12, p.127, November (1996).
Google Scholar
[6]
K. Sugai, S. Kishida, T. Shinzawa, H. Okabayashi, T. Yako, H. Kadokura, M. Isemura, T. Kobayashi, and N. Hosokawa, Aluminum Metallization Using a Combination of Chemical Vapor Deposition and Sputtering, J. Electrochem. Soc., Vol. 144, pp.1028-1035.
DOI: 10.1149/1.1837525
Google Scholar
[7]
Y. J. Lee and S.W. Kang Atomic Layer Deposition of Aluminum Thin Films Using an Alternating Supply of Trimethylaluminum and a Hydrogen Plasma, Electrochemical and Solid-State Letters, Vol. 5 pp. C91-C93, August (2002).
DOI: 10.1149/1.1503204
Google Scholar
[8]
D.H. Kim and B.Y. Kim, Morphology and Hole Filling Properties of Chemically Vapor Deposited Aluminum Films Prepared from Dimethylethylamine Alane, J. Electrochem. Soc., Vol. 148, pp. C10–C15, January 2001, doi: org/10. 1149/1. 1339031.
DOI: 10.1149/1.1339031
Google Scholar
[9]
G. Binnig, C.F. Quate, C. Gerber, Atomic Force Microscope, Phys. Rev. Lett. Vol. 56, p.930–933, March 1986, doi: 10. 1103/Phy RevLett. 56. 930.
DOI: 10.1103/physrevlett.56.930
Google Scholar
[10]
S. Christoulakis, M. Suchea, E. Koudoumas, M. Katharakis, N. Katsarakis, G. Kiriakidis, Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD, Appl. Surf. Sci., Vol. 252, p.5351.
DOI: 10.1016/j.apsusc.2005.12.071
Google Scholar
[11]
A.R. Boyd, B.J. Meenan and N.S. Leyland, Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution, Surf. Coat. Technol., Vol. 200 p.6002.
DOI: 10.1016/j.surfcoat.2005.09.032
Google Scholar
[12]
M. A. Grinfeld Instability of the separation boundary between a non-hydrostatically stressed elastic body and a melt, Soviet Phys. Dokl., vol. 31, p.831, (1986).
DOI: 10.1557/proc-237-61
Google Scholar
[13]
D. W. Pashley The nucleation, growth, structure and epitaxy of thin surface films, Adv. Phy., Vol. 14, p.327–416, July 1965, doi. 10. 1080/00018736500101071.
DOI: 10.1080/00018736500101071
Google Scholar
[14]
K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, (1969).
Google Scholar
[15]
N. G. Semaltianos Thermally evaporated aluminium thin films, Applied urface Science, Vol. 183, pp.223-229, November 2001, doi: 10. 1016/S0169-4332(01)00565-7.
DOI: 10.1016/s0169-4332(01)00565-7
Google Scholar
[16]
D. Aurongzeb Interface roughening in wrinkly metal, J. Phys.: Condens. Matter Vol. 17, p.2655–2662, April 2005 doi: 10. 1088/0953-8984/17/17/013.
DOI: 10.1088/0953-8984/17/17/013
Google Scholar
[17]
Y. Watanabe, Y. Nakamura, S. Hirayama and Y. Naota AFM study of surface morphology of aluminum nitride thin films, Mat. Res. Soc. Symp. Proc. Vol. 388, pp.394-404, (1995).
DOI: 10.1557/proc-388-399
Google Scholar