A Study on the Effect of Process Parameters on Surface Topography of Al Thin Films on Various Substrates Using AFM

Article Preview

Abstract:

Al thin films were prepared over different substrates at various process conditions using DC sputtering. The surface topography of all prepared films was examined using AFM technique. Very smooth, uniform and dense surface were observed for Al films coated over Glass substrates. The observed particle size was nano scale (20 -70 nm) for Glass substrates. Sputtering power showed immense effect on surface roughness with respective to Ar gas flow rate. Noticeable change on surface with large particles was observed in Copper substrates at various sputtering power and gas flow rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

903-908

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Lin, K. C. Peng, T.Y. Yeh, S.L. Lee, On the structure and characterization of Al, Sc-Co-doped ZnO-films varying with 0–2. 37 wt. % Sc contents, Thin Solid Films, Vol. 517, p.4715–4719, March 2009 doi: 10. 1016/j. tsf. 2009. 03. 022.

DOI: 10.1016/j.tsf.2009.03.022

Google Scholar

[2] T. Minami, S. Suzuki, T. Miyata, Transparent conducting impurity-co-doped ZnO: Al thin films prepared by magnetron sputtering, Thin Solid Films, Vol. 53, p.398–399, November 2001, doi: 10. 1016/S0040-6090(01)01303-7.

DOI: 10.1016/s0040-6090(01)01303-7

Google Scholar

[3] M. J. Cooke, R. A. Heinecke, R. C. Stern and J. W. C. Maes, LPCVD of Aluminum and Al-Si Alloys for Semiconductor Metallization, Solid State Technol., Vol. 25 pp.62-65, December (1982).

Google Scholar

[4] K. Sugai, H. Okabayashi, S. Kishida, and T. Shinzawa, Titanium-containing hydrofluoric acid pretreatment for aluminum chemical vapor deposition, Thin Solid Films, Vol. 280, pp.142-146, July 1996, doi: 10. 1016/0040-6090(95)08207-7.

DOI: 10.1016/0040-6090(95)08207-7

Google Scholar

[5] A. E. Kaloyeros, M. E. Thomas, J. Norman, and J. J. Sullivan, Aluminum interconnects for ULSI: The CVD route, Semicond. Int., Vol. 12, p.127, November (1996).

Google Scholar

[6] K. Sugai, S. Kishida, T. Shinzawa, H. Okabayashi, T. Yako, H. Kadokura, M. Isemura, T. Kobayashi, and N. Hosokawa, Aluminum Metallization Using a Combination of Chemical Vapor Deposition and Sputtering, J. Electrochem. Soc., Vol. 144, pp.1028-1035.

DOI: 10.1149/1.1837525

Google Scholar

[7] Y. J. Lee and S.W. Kang Atomic Layer Deposition of Aluminum Thin Films Using an Alternating Supply of Trimethylaluminum and a Hydrogen Plasma, Electrochemical and Solid-State Letters, Vol. 5 pp. C91-C93, August (2002).

DOI: 10.1149/1.1503204

Google Scholar

[8] D.H. Kim and B.Y. Kim, Morphology and Hole Filling Properties of Chemically Vapor Deposited Aluminum Films Prepared from Dimethylethylamine Alane, J. Electrochem. Soc., Vol. 148, pp. C10–C15, January 2001, doi: org/10. 1149/1. 1339031.

DOI: 10.1149/1.1339031

Google Scholar

[9] G. Binnig, C.F. Quate, C. Gerber, Atomic Force Microscope, Phys. Rev. Lett. Vol. 56, p.930–933, March 1986, doi: 10. 1103/Phy RevLett. 56. 930.

DOI: 10.1103/physrevlett.56.930

Google Scholar

[10] S. Christoulakis, M. Suchea, E. Koudoumas, M. Katharakis, N. Katsarakis, G. Kiriakidis, Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD, Appl. Surf. Sci., Vol. 252, p.5351.

DOI: 10.1016/j.apsusc.2005.12.071

Google Scholar

[11] A.R. Boyd, B.J. Meenan and N.S. Leyland, Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution, Surf. Coat. Technol., Vol. 200 p.6002.

DOI: 10.1016/j.surfcoat.2005.09.032

Google Scholar

[12] M. A. Grinfeld Instability of the separation boundary between a non-hydrostatically stressed elastic body and a melt, Soviet Phys. Dokl., vol. 31, p.831, (1986).

DOI: 10.1557/proc-237-61

Google Scholar

[13] D. W. Pashley The nucleation, growth, structure and epitaxy of thin surface films, Adv. Phy., Vol. 14, p.327–416, July 1965, doi. 10. 1080/00018736500101071.

DOI: 10.1080/00018736500101071

Google Scholar

[14] K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, (1969).

Google Scholar

[15] N. G. Semaltianos Thermally evaporated aluminium thin films, Applied urface Science, Vol. 183, pp.223-229, November 2001, doi: 10. 1016/S0169-4332(01)00565-7.

DOI: 10.1016/s0169-4332(01)00565-7

Google Scholar

[16] D. Aurongzeb Interface roughening in wrinkly metal, J. Phys.: Condens. Matter Vol. 17, p.2655–2662, April 2005 doi: 10. 1088/0953-8984/17/17/013.

DOI: 10.1088/0953-8984/17/17/013

Google Scholar

[17] Y. Watanabe, Y. Nakamura, S. Hirayama and Y. Naota AFM study of surface morphology of aluminum nitride thin films, Mat. Res. Soc. Symp. Proc. Vol. 388, pp.394-404, (1995).

DOI: 10.1557/proc-388-399

Google Scholar