Study on PMV Index Forecasting Method Based on Fuzzy C-Means Clustering

Article Preview

Abstract:

In order to improve the forecasting accuracy of indoor thermal comfort, the basic principle of fuzzy c-means clustering algorithm (FCM) and support vector machines (SVM) is analyzed. A kind of SVM forecasting method based on FCM data preprocess is proposed in this paper. The large data sets can be divided into multiple mixed groups and each group is represented by a single regression model using the proposed method. The support vector machines based on fuzzy c-means clustering algorithm (FCM+SVM) and the BP neural network based on fuzzy c-means clustering algorithm (FCM+BPNN) are respectively applied to forecast PMV index. The experimental results demonstrate that the FCM+SVM method has better forecasting accuracy compared with FCM+BPNN method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

925-930

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Gassmann, H. H. Meixner. Sensors in Intelligent Buildings[M]. Weinheim(Germany): WILET-VCH Verlag GmbH, ISBN: 3-527-29557-7, (2001).

Google Scholar

[2] Schenck, Paula. Mold in the indoor environment and health[C]. International Conference on Indoor Air Qulity/Healthy Indoor Environment, Vancouver, BC, Canada, 2003, 73-88.

Google Scholar

[3] Fanger P O. Thermal Comfort [M]. New York: McGraw-Hill Inc, (1970).

Google Scholar

[4] P. O. Fanger. Thermal Comfort, Analysis and Applications in Environmental Engineering[M]. New York: McGraw-Hill Inc., (1972).

Google Scholar

[5] J. C. Bezdek. Fuzzy mathematics in pattern classification[D]. New York: Cornell University, (1973).

Google Scholar

[6] J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters[J]. J. Cybernet, 1974, (3): 32-57.

DOI: 10.1080/01969727308546046

Google Scholar

[7] R. N. Dave, K. Bhaswan. Adaptive fuzzy c-shells clustering and detection of ellipses[J]. IEEE Trans. Neural Networks, 1992, 3(5): 643-662.

DOI: 10.1109/72.159055

Google Scholar

[8] R. Krishnapuram, O. Nasraoui, J. Keller. The fuzzy c spherical shells algorithm: a new approach[J]. IEEE Trans. Neural Networks, 1992, 3(5): 663-671.

DOI: 10.1109/72.159056

Google Scholar

[9] Y. Man, I. Gath. Detection and separation of ring-shaped clusters using fuzzy clustering[J]. IEEE Trans. Pattern Anal. Mach. Intell, 1994, 16(8): 855-861.

DOI: 10.1109/34.308484

Google Scholar

[10] Deng naiyang, Tian yingjie. A New Method of Data Mining-Support Vector Machines[M]. Beijing:Science Press, 2004. TableI Clustering centers and corresponding PMV Num. Temperature (℃) Humidity (%) Wind speed (m/s) Average radiation temperature (℃) Vapor partial pressur(e/Pa) Clothing temperature (℃) Clothing thermal resistance (clo) PMV P1.

Google Scholar

[23] 4.

Google Scholar

[55] 5.

Google Scholar

[24] 4 3256. 8.

Google Scholar

[29] 7.

Google Scholar

[26] 2.

Google Scholar

[58] 5.

Google Scholar

[27] 2 3672. 4.

Google Scholar

[32] 4.

Google Scholar

[1] 28 P3.

Google Scholar

[15] 4.

Google Scholar

[59] 4.

Google Scholar

[16] 7 2046. 3.

Google Scholar

[21] 7.

Google Scholar

[1] 02 -2. 20 P4.

Google Scholar

[28] 8.

Google Scholar

[61] 4.

Google Scholar

[29] 7 4064. 0.

Google Scholar

[35] 0.

Google Scholar

[1] 67 P5 P6 P7.

Google Scholar

[20] 4.

Google Scholar

[11] 9.

Google Scholar

[18] 1.

Google Scholar

[60] 7.

Google Scholar

[62] 4.

Google Scholar

[60] 2.

Google Scholar

[21] 4.

Google Scholar

[12] 9.

Google Scholar

[19] 0 2794. 7 1514. 8 2447. 3.

Google Scholar

[26] 6.

Google Scholar

[18] 1.

Google Scholar

[24] 3.

Google Scholar

[1] 20.

Google Scholar

85 -0. 70 -2. 77 -1. 45 Table II FCM + SVM based PMV Forecasting value and error Num. Computational FCM+SVM Error 1.

Google Scholar

[1] 11.

Google Scholar

83 -0. 28 2.

Google Scholar

[1] 52.

Google Scholar

[1] 43 -0. 09 3.

Google Scholar

[1] 46.

Google Scholar

[1] 38 -0. 08 4.

Google Scholar

[1] 41.

Google Scholar

[1] 37 -0. 05 5.

Google Scholar

[1] 03.

Google Scholar

06 56 -0. 52 -0. 46.

Google Scholar

[1] 15.

Google Scholar

20 59 -0. 18 -0. 12.

Google Scholar

03 Table V Euclidean distance obtained with 2 prediction methods prediction method FCM+SVM FCM+BPNN Euclidean distance.

Google Scholar

[1] 641.

Google Scholar

[1] 650 Table III FCM + BPNN based PMV Forecasting value and error Num. Computational FCM+BPNN Error 1.

Google Scholar

[1] 11.

Google Scholar

82 -0. 29 2.

Google Scholar

[1] 52.

Google Scholar

[1] 45 -0. 07 3.

Google Scholar

[1] 46.

Google Scholar

[1] 40 -0. 06 4.

Google Scholar

[1] 41.

Google Scholar

[1] 36 -0. 05 5.

Google Scholar

[1] 04.

Google Scholar

08 56 -0. 52 -0. 43.

Google Scholar

[1] 18.

Google Scholar

23 59 -0. 18 -0. 14.

Google Scholar

03 Table IV Comparison on FCM+SVM and FCM+BPNN Num. Computa- tional PMV FCM+ SVM Error (FCM+ SVM) FCM+ BPNN Error (FCM+ BPNN) 1.

DOI: 10.1109/icnc.2008.274

Google Scholar

[1] 11.

Google Scholar

83 -0. 28.

Google Scholar

82 -0. 29 2.

Google Scholar

[1] 52.

Google Scholar

[1] 43 -0. 09.

Google Scholar

[1] 45 -0. 07 3.

Google Scholar

[1] 46.

Google Scholar

[1] 38 -0. 08.

Google Scholar

[1] 40 -0. 06 4.

Google Scholar

[1] 41.

Google Scholar

[1] 37 -0. 05.

Google Scholar

[1] 36 -0. 05 5.

Google Scholar

[1] 03.

Google Scholar

[1] 04.

Google Scholar

08 56 -0. 52 -0. 46.

Google Scholar

06 -0. 43.

Google Scholar

[1] 15.

Google Scholar

[1] 18.

Google Scholar

23 59 -0. 18 -0. 12.

Google Scholar

06 -0. 14.

Google Scholar