[1]
P.M. Sivakumar, S. Balaji, V. Prabhawathi, R. Neelakandan, P.T. Manoharan, M. Doble. Effective antibacterial adhesive coating on cotton fabric using ZnO nanorods and chalcone. Carbohydrate Polymers, 2010, 79(3): 717.
DOI: 10.1016/j.carbpol.2009.09.027
Google Scholar
[2]
J. Mungkalasiri, L. Bedel, F. Emieux, J. Doré, F.N.R. Renaud, F. Maury. DLI-CVD of TiO2–Cu antibacterial thin films: Growth and characterization. Surface and Coatings Technology, 2009, 204(6-7): 887.
DOI: 10.1016/j.surfcoat.2009.07.015
Google Scholar
[3]
Yousheng OUYANG, Yushan XIE, Shaozao TAN, Qingshan SHI, Yiben CHEN. Structure and antibacterial activity of Ce3+ exchanged montmorillonites. Journal of Rare Earths, 2009, 27(5): 858.
DOI: 10.1016/s1002-0721(08)60350-6
Google Scholar
[4]
Jing, HM; Yu, ZM; Li, L. Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A. 2008, 87A(1): 33-37.
DOI: 10.1002/jbm.a.31688
Google Scholar
[5]
J.H. Hsieh, C.C. Tseng, Y.K. Chang, S.Y. Chang, W. Wu. Antibacterial behavior of TaN–Ag nanocomposite thin films with and without annealing. Surface & Coatings Technology. 2008, 202(22-23): 5586–5589.
DOI: 10.1016/j.surfcoat.2008.06.107
Google Scholar
[6]
Gajendra Kumar, Dharmendra Kumar, Shoma Devi, Rajeev Johari, C. P Singh. Synthesis, spectral characterization and antimicrobial evaluation of Schiff base Cu (II), Ni (II) and Co (II) complexes. European Journal of Medicinal Chemistry, In Press, Accepted Manuscript, Available online 29 March (2010).
DOI: 10.1016/j.ejmech.2010.03.036
Google Scholar
[7]
Sarah Fox, Tom S. Wilkinson, Paul S. Wheatley, Bo Xiao, Russell E. Morris, Alistair Sutherland, A. John Simpson, Peter G. Barlow, Anthony R. Butler, Ian L. Megson, Adriano G. Rossi, NO-loaded Zn2+-exchanged zeolite materials: A potential bifunctional anti-bacterial strategy. Acta Biomaterialia, 2010, 6(4): 1515.
DOI: 10.1016/j.actbio.2009.10.038
Google Scholar
[8]
Sun, CB, Zhou, BH, Ding, H, et al. The Self-assembling and Application of Inorganic Antibacterial Material Made of Natural Nanoporous Carrier. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION. 2008, 2(36): 771-774.
DOI: 10.1007/s11595-007-6771-x
Google Scholar
[9]
Tang Xiaoning, Xie Gang, Zhang Bin, Wang Xiaonan. Silver supported on white carbon black containing rare earths as antibacterial material [J]. JOURNAL OF RARE EARTHS, 2007, 25(spec. ): 97-103.
DOI: 10.1016/s1002-0721(10)60330-4
Google Scholar
[10]
Zhang Bin, Tang Xiaoning, Xie Gang, He Suqiong, Dong Yang. Preparation and Characterization of Cu-Inorganic Antibacterial Material Containing Rare Earths [J]. Advanced Materials Research. 2009, 79-82: 989-992.
DOI: 10.4028/www.scientific.net/amr.79-82.989
Google Scholar
[11]
Liang Jinsheng, Liang Guangchuan, Qi Hongfei, Wu Zizhao, Ji Zhijiang, Jin Zongzhe. Influence of composite phosphate inorganic antibacterial materials containing rare earth on activated water property of ceramics [J]. Journal of Rare Earths, 2004, 22(3): 436.
Google Scholar
[12]
Zhang Bin, Xie Gang, Tang Xiaoning, Wang Xiaonan. Preparation and Characterization of Cu-Ag-Inorganic Antibacterial Material Containing Rare Earths [J]. JOURNAL OF RARE EARTHS. 2007, 25(spec. ): 175-181.
DOI: 10.1016/s1002-0721(10)60346-8
Google Scholar
[13]
Tang Xiaoning, Zhang Bin, Xie Gang, Xia Xueshan. Study on Antibacterial Mechanism of Ag-Inorganic Antibacterial Material Containing Lanthanum [J]. Advanced Materials Research. 2009, 79-82: 1799-1802.
DOI: 10.4028/www.scientific.net/amr.79-82.1799
Google Scholar
[14]
Meifeng ZHOU, Qizhuang HE. Synthesis, characterization, and biological properties of nano-rare earth complexes with L-glutamic acid and imidazole [J]. Journal of Rare Earths, 2008, 26(4): 473-477.
DOI: 10.1016/s1002-0721(08)60121-0
Google Scholar
[15]
Bin Zhang, Xiaoning Tang, Yinhua Xu, Peng Jiang, Liang Fu. Synthesis and characterization of modified Ag-antibacterial White Carbon Black [J]. New chemical material. 2010, 38(6).
Google Scholar