Fabrication and Photocatalytic Activities of TiO2 Nano-Films Deposited at Different Ar/O2 Flow Ratios by DC Magnetron Sputtering

Article Preview

Abstract:

Polycrystalline TiO2 nano-films were prepared by DC magnetron sputtering at different Ar/O2 flow ratios. The thicknesses of all the prepared films were about 200 nm. The prepared films consist of a mixture of anatase and rutile phase. The TiO2 nano-films deposited at Ar/O2 flow ratio (1:1) have the best crystallinity and the mixture phase of anatase and rutile. SEM images show that the film surface composed of polygonal particles about 100 nm in diameter. UV–Vis transmission measurements reveal that the band gap of the deposited TiO2 nano-films changed from 3.01 to 3.12 eV. The photocatalytic activities of the TiO2 films were investigated by the decomposition of IPA under UV irradiation. The IPA can be oxidized to acetone and further to CO2. The maximal acetone concentration and CO2 concentration can reach to 29.2 ppm and 4 ppm after 120 min.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

1291-1295

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda, Nature, Vol. 238 (1972)p.37.

Google Scholar

[2] Masahiro Miyauchi, Akira Nakajima, et al, Chem. Mater. Vol. 14 (2002)pp.2812-2816.

Google Scholar

[3] Zhigang Zou, Jinhua Ye, Kazuhiro Sayama, Hironori Arakawa, Nature, ( 2001)pp.625-627.

Google Scholar

[4] J. J. Lagref, Md.K. Nazeeruddin, M. Gratzel, Synthetic Metals, Vol. 138 (2003)p.333–339.

Google Scholar

[5] M. Graetzel, Comments Inorg. Chem. Vol. 93 (1991)p.12.

Google Scholar

[6] Kyung-Hee Park, Marshal Dhayal, Electrochemistry Communications, Vol. 11 (2009)p.75–79.

Google Scholar

[7] M.R. Hoffmann, S.T. Martin, W. Choi, D. Bahnemann, Chem. Rev. Vol. 69 (1995)p.95.

Google Scholar

[8] G.A. Battiston, R. Gerbasi, M. Porchia, A. Marigo, Thin Solid Films, Vol. 186 (1994)p.239.

DOI: 10.1016/0040-6090(94)90849-4

Google Scholar

[9] T. Watanabe, A. Kitamura, E. Kojima, et al, Chem. Lett. Vol. 723 (1994).

Google Scholar

[10] M. Terashima, N. Inoue, S. Kashiwabara, Appl. Surf. Vol. 535 (2001)pp.169-170.

Google Scholar

[11] Di Li, Hajime Haneda, et al, Chem. Mater. Vol. 17 (2005)p.2588–2595.

Google Scholar

[12] A. Kinbara, E. Kusano, S. Baba, J. Vac. Sci. Technol. A, Vol. 10 (1992)p.1483.

Google Scholar

[13] Wenjie Zhang, Ying Li, et al , Surface and Coatings Technology, Vol. 182 (2004)p.192–198.

Google Scholar

[14] T. Asanuma, T. Matsutani, C. Liu, T. Mihara, M. Kiuchi, J. Appl. Phys. Vol. 95 (2004)p.6011.

Google Scholar

[15] K. Ikeda, H. Sakai, R. Baba, et al, J. Phys. Chem. B, Vol. 101 (1997)p.2617.

Google Scholar

[16] I. M. Fraser and J. R. MacCallum, J. Chem. Soc. Vol. 82 (1985)p.2747.

Google Scholar

[17] R. I. Bickley, G. Munuera, and F. S. Stone, J. Catal. Vol. 31 (1973)p.398.

Google Scholar

[18] K. Ohko, K. Hashimoto, A. Fujishima, J. Phys. Chem. A, Vol. 101 (1997)p.8057.

Google Scholar

[19] Gonghu Li, Shannon Ciston, et al, Journal of Catalysis, Vol. 253 (2008)p.105–110.

Google Scholar

[20] S. Bakardjieva, J. Subrt, V. Stengl, M. Dianez, M. Sayagues, Appl. Catal. B, Vol. 193 (2005)p.58.

Google Scholar