Conductive and Mechanical Properties of Graphite Nanoplatelets/PVC Nanocomposites Prepared by Melt Blending

Article Preview

Abstract:

Graphite nanoplatelets (Nano-Gs) were prepared by treating the expanded graphite with sonication in aqueous alcohol solution, and then the Nano-Gs/ PVC nanocomposites were fabricated by way of melt blending. The structure of Nano-Gs was characterized by FTIR and SEM, the conductive and mechanical properties of the Nano-Gs/ PVC nanocomposites were also studied. Results show that with a small amount of functional groups distributing on the surface, Nano-Gs have a thickness ranging 30-100nm and a diameter ranging 3-20μm, and disperse randomly in PVC resin matrix. The Nano-Gs/ PVC nanocomposites exhibit low volume resistivity of 104Ω•cm when the mass fraction of Nano-Gs goes beyond 10%, and the percolation threshold of the nanocomposites is as low as 6wt%. Furthermore, with the increase of the filled Nano-Gs, both the tensile strength and notched impact strength of the nanocomposites increase first and then decrease, and achieve the maximal value simultaneously with the addition of 1 wt% Nano-Gs, which increase by 8% and 29% respectively compared with the pristine PVC.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

517-523

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sterzynski, J. Tomaszewska, K. Piszczek and K. Skórczewska: Compos. Sci. and Technol. Vol. 70 (2010), p.966.

Google Scholar

[2] A.P. Zhu, A.Y. Cai, W.D. Zhou and Z.H. Shi: Appl. Surf. Sci Vol. 254 (2008), p.3745.

Google Scholar

[3] X.L. Xie, Q.X. Liu, R.K. Li, X.P. Zhou and Y.W. Mai: Polym. J Vol. 45 (2004), p.6665.

Google Scholar

[4] G.H. Chen, W.G. Weng, D.J. Wu, C.L. Wu, J.R. Lu, P.P. Wang and X.F. Chen: Carbon Vol. 42 (2004), p.753.

Google Scholar

[5] A. Yasmin, J.J. Luo and I.M. Daniel: Comp. Sci. Technol Vol. 66 (2006), p.1179.

Google Scholar

[6] S. Ansari and E.P. Giannelis: J. Polym. Sci., Part B: Polym. Phys Vol. 47 (2008), p.888.

Google Scholar

[7] G.H. Chen, W.G. Weng, D.J. Wu and C.L. Wu: J. Polym. Sci., Part B: Polym. Phys Vol. 42 (2004), p.155.

Google Scholar

[8] Z.L. Mo, H.F. Shi, H. Chen, G.P. Niu, Z.L. Zhao and Y.B. Wu: J. Appl. Polym. Sci Vol. 112 (2009), p.573.

Google Scholar

[9] Z.L. Mo, D.D. Zuo, H. Chen, Y.X. Sun and P. Zhang: Eur. Polym. J Vol. 43 (2007), p.300.

Google Scholar

[10] L.C. Zhou, J.S. Lin, and G.H. Chen: J. Polym. Sci., Part B: Polym. Phys Vol. 47 (2009), p.576.

Google Scholar

[11] J.R. Lu, W.G. Weng, X.F. Chen and G.H. Chen: Adv. Funct. Mater Vol. 15 (2005), p.1358.

Google Scholar

[12] H.M. Tu and Y. Lin: Polym. Adv. Technol Vol. 20 (2009), p.21.

Google Scholar

[13] W.G. Weng, G.H. Chen, D.J. Wu, X.F. Chen, J.R. Lu and P.P. Wang: J. Polym. Sci., Part B: Polym. Phys Vol. 42 (2004), p.2844.

Google Scholar

[14] J.Y. Jang, M.S. Kim, H.M. Jeong and C.M. Shin: Compos. Sci. Technol Vol. 69 (2009), p.186.

Google Scholar

[15] L. Chen, L. Lu, D.J. Wu and G.H. Chen: Polym. Compos Vol. 28 (2007), p.493.

Google Scholar

[16] H.Q. Wang, H.Y. Zhang and G.H. Chen: Composites: Part A Vol. 38 (2007), p.2116.

Google Scholar

[17] J.K. Park, I.H. Do, P. Askeland P and L.T. Drzal: Compos. Sci. Technol Vol. 68 (2008), p.1734.

Google Scholar

[18] G.H. Chen, D.J. Wu, W.G. Weng and W.L. Yan: Polym. Eng. and Sci. Vol. 41 (2001), p.2148.

Google Scholar

[19] A. Celzard, G. Furdin, J.F. Mareche and E. McRae: Solid State Commun Vol. 92 (1994), p.377.

Google Scholar

[20] W. Lu, H.F. Lin, D.J. Wu and G.H. Chen: Polymer Vol. (47) (2006), p.4440.

Google Scholar