Electrolysis Process for Preparation of Solar Grade Silicon

Article Preview

Abstract:

Studied on electrorefining metallurgical grade silicon to prepare solar grade silicon(SOG-Si) with electrochemical method in molten KCl and NaF mixture salt. Molten KCl and NaF mixture salt as electrolyte, the metallurgical grade silicon as anode and little metal nickel crucible for collecting silicon powder as cathode, electrorefining experiments were performed at 800 and 2.0V for 14h under dry argon atmosphere. The results showed that the metallurgical grade silicon could be dissolved and deposited on the cathode through molten potassium chloride (KCl) and sodium fluoride (NaF) mixture salt electrolyte. The nickel crucible was full of deposit, which was pure silicon by XRD and EDS. Purity of refined silicon was close to 99.99%, most of impurities like B and P were reduced significantly. Impurity level of silicon was reduced to the desired range for SOG-Si by advancement of the materials for the cell components.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

697-702

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Monnier and J. C. Giacometti, J: Helvetica Chimica Acta, Vol. 47 (1964), p.345.

Google Scholar

[2] K. Yasuda, T. Noh Ira, Y. Ito, J: Journal of Physics and Chemistry of Solids, Vol. 66 (2005), pp.443-447.

Google Scholar

[3] T. Noh Ira, K. Yasuda, Y. Ito, J: Nature Materials, Vol. 2 (2003), pp.397-401.

Google Scholar

[4] K. Yasuda, T. Noh Ira, K. Amezawa, J: Journal of the Electrochemical Society, Vol. 152 (2005), pp.69-74.

Google Scholar

[5] T. Nohira, K. Yasuda, Y. Ito, J: Nat. Mater. Vol. 2 (2003), pp.397-401.

Google Scholar

[6] G.Z. Chen, D.J. Fray, T.W. Farthing: J. Nature Vol. 407 (2000), pp.361-364.

Google Scholar

[7] X. Jin, P. Gao, D. Wang, X. Hu, G.Z. Chen, J. Angew. Chem. Ger. Ed. Vol. 43 (2004), pp.733-736.

Google Scholar

[8] K. Yasuda, T. Nohira, K. Amezawa, Y.H. Ogata, Y. Ito, J. Electrochem: Soc. Vol. 152 (2005) pp.69-74.

Google Scholar

[9] K. Yasuda, T. Nohira, Y. Ito, J. Phys. Chem: Solids Vol. 66 (2005), pp.443-447.

Google Scholar

[10] K. Yasuda, T. Nohira, K. Takahashi, R. Hagiwara, Y. H. Ogata, J. Electrochem: Soc. Vol. 152 (2005) pp.232-237.

Google Scholar

[11] P. C. Pistorius, D. J. Fray, J. S. Afr. I. Min. Metall. Vol. 106 (2006), pp.31-41.

Google Scholar

[12] W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, G. Z. Chen, Chemphyschem Vol. 7 (2006), pp.1750-1758.

Google Scholar

[13] K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata, J: Electrochem. Soc. Vol. 154 (2007) E95-E101.

Google Scholar

[14] K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata, Electrochim. Acta 53 (2007), pp.106-110.

Google Scholar

[16] G. Chen, E. Gordo, D. Fray: J. Metallurgical and Materials Transactions B, Vol. 35 (2004), p.223.

Google Scholar

[17] X. Liao, H. Xie, Y. Zhai, Y. Zhang, J.: Journal of Materials Sciences and Technology, Vol. 25 (2009), p, 717.

Google Scholar

[18] C. Schwandt, D. J. Fray: J. Electrochim Acta, Vol. 51 (2005), p.66.

Google Scholar

[19] G. M. Rao, D. Elwell, R. S. Feigelsion, J. Electrochem. Soc. Vol. 127 (1980), p. (1940).

Google Scholar