Characterization of Nanosize Mn-Zn Ferrites Coated with Citric Acid

Article Preview

Abstract:

The citric-acid coated Mn-Zn ferrite nanocrystalline was prepared by an improved co-precipitation method. X-ray diffraction (XRD) and TEM measurements indicated that the coated samples were pure spinel Mn-Zn ferrite nanocrystalline and the particles coated after boiling circumfluence were more homogeneous than that before boiling circumfluence. Vibrating sample magnetometer (VSM) indicated that the Ms of the coated samples was higher than that without coating. Specially when the content of citric acid is 4.76wt% after boiling circumfluence, the Ms of the coated sample is 54.15 emu•g-1 which is 28.7% higher than that without coating.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

835-838

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Drofenik, M., et al. J. Appl. Phys. Vol. 82 (1997)pp.333-340.

Google Scholar

[2] Z. Q. Han. J Magn Mater Devices, Vol. 41 (2010)pp.1-11.

Google Scholar

[3] M. Sisk, I. Kilbride, A.J. Barker. J. Mater. Sci. Lett, Vol. 14 (1995)pp.153-154.

Google Scholar

[4] Andre Angermann, J. T. pfer. Ceramics International, Vol. 37 (2011)pp.995-998.

Google Scholar

[5] C. F. Zhang, X. C. Zhong, H. Y. Yu, et al. Physica B, Vol. 404 (2009)pp.2327-2329.

Google Scholar

[6] C. J. Liu, Y. Wei, S. L. Hao, et al. J Magn Mater Devices, Vol. 139 (2008)pp.51-53.

Google Scholar

[7] C. Xue, G. Liu, Y. M. Wang, et al. Journal of Alloys and Compounds, Vol. 497 (2010)pp.9-12.

Google Scholar

[8] C. Rath, K.K. Sahu, S. Anand, et al. Journal of Magnetism and Magnetic Materials, Vol. 202 (1999)pp.77-84.

Google Scholar

[9] Y. Yamamoto, A. Makino. J. Magn. Magn. Mater. Vol. 133 (1994)pp.500-503.

Google Scholar

[10] X. Wang, Y. F. Cui, Y. M. Wang, et al. Rare Metals, Vol. 25 (2006)pp.526-529.

Google Scholar

[11] H. Waqas, A. H. Qureshi. J Therm Anal Calorim, Vol. 200 (2010)pp.529-535.

Google Scholar

[12] P. Mathur, A. Thakur, M. Singh. J Mater Sci, Vol. 42 (2007)pp.8189-8192.

Google Scholar

[13] G. C. Xu, L. D. Zhang. Nanometer Compound Materials, (Chemical industry press, China 2002).

Google Scholar

[14] B. W. Li. Beijing: Beijing University of Technology, (2006).

Google Scholar

[15] P. Liu. M. S. Dissertation, Tianjin: Tianjin University, ( 2006).

Google Scholar

[16] G. F. Hua, Y. F. Liu, J. Chen, et al. Chemical Research, Vol. 14 (2003)pp.9-12.

Google Scholar

[17] H. Y. Gong, Y. S. Yin, X. Wang, et al. Materials Research Bulletin, Vol. 39 (2004)pp.513-521.

Google Scholar

[18] Y. F. Cui, X. Wang, Y. Wei, et al. Journal of Synthetic Crystals, Vol. 34 (2005)pp.1096-1099.

Google Scholar

[19] B. D. Cullity. Elements of X-ray Diffraction. Addison-Wesley, Reading, MA, (1987. ).

Google Scholar

[20] X. M. Zhou. Journal of the Chinese Rare Earth Society, Vol. 20 (2002)pp.67-69.

Google Scholar

[21] Y. L. Wang, Y. Huang, L. Yan, et al. Bulletin of the Chinese Ceramic Society, Vol. 25 (2006)pp.83-88.

Google Scholar

[22] Z. X. Yue, J. Zhou, H. G. Zhang, et al. Journal of the Chinese Ceramic Society, Vol. 27 (1999)pp.466-470.

Google Scholar