Advanced Materials Research Vols. 391-392

Paper Title Page

Abstract: Typically, the resin matrix, glass fibers and fillers in the molding composition of about 80%, and other components including the initiator and inhibitor, chemical thickeners, low shrink / low waviness additives, coloring agents, release agents, etc. Although a small proportion of them, but to improve performance, processes, and molding compounds, such as SMC / BMC's performance has played a very important role.
336
Abstract: High voltage insulation of the heat-resistant polymer composite material mainly composed of synthetic resin matrix, reinforcing materials, inorganic fillers, pigments and other components. In addition, according to the technical and performance requirements will be added in the resin matrix curing agent, thickener, mold release agents, solvents and so on. By different proportions of the resin matrix and filler and other additives, under conditions in certain insulating polymer composites were prepared to explore the relationship between components, the best formula and the ideal insulation material.
340
Abstract: The modal properties of carbon fiber woven fabric / epoxy resin composites with different fiber orientation angles were studied by using single input single output free vibration of cantilever beam hammering modal analysis method. With the same fiber volume fraction, the different fiber orientation of the laminated composite has an effect on parameters of vibration mode of composites. The experimental results show that with the fiber orientation increasing, the natural frequency of laminated composites becomes smaller and damping ratio becomes larger. The fiber orientation smaller, the peak value of natural frequency becomes higher and the attenuating degree of acceleration amplitude becomes slower.
345
Abstract: This paper makes 3 specimens by applying the composite resin concrete, the resin concrete and the reinforced concrete with Portland. By means of ANSYS, the analysis of finite element modal and harmonic response are made about above specimens. Their pictures of the frequency, model shape and harmonic response are drawn. Through comparing and analysis, the results show that the composite resin concrete has excellent anti-vibration and can dissipate the energy generated by external excitation with the smallest deformation.
349
Abstract: The aggregate, as the main ingredient of concrete, takes up 2/3-3/4 volume of the concrete and plays the important role of concrete about the overall performance. When concrete are mixed, alkali-activated silica, carbonate, sulfate and chloride contained in aggregate would produce chemical reactions. According to above reactions, this paper analyzes their influence to the concrete durability. Some precautions are put forward to enhance concrete durability.
354
Abstract: Five-layer biaxial weft knitted (FBWK) fabric is one kind of multilayered biaxial weft knitted (MBWK) fabric. FBWK fabric is made of carbon fiber as inserted yarns and stitched with polyester yarns, and it has been impregnated with epoxy via resin transfer molding (RTM) technique to manufacture the composite plates. The bending properties of the FBWK fabric reinforced composite are studied with the three-point bending test method. The bending properties of the FBWK fabric reinforced composite materials with different fiber volume fraction have been investigated. The results show that the relationship between bending load and deflection is obviously linear before reaching the maximum load. Within a certain range, the bending strength of this kind of composites increases with the fiber volume fraction increasing. When the fiber volume fraction is 57%, the bending strength is 1051.4 MPa.
359
Abstract: Aluminium matrix composites reinforced by Al2O3 particles has been produced by adding NH4AlO(OH)HCO3 into molten ADC12 Al-Si alloy, where the γ-Al2O3 reinforcement particles are formed by decomposing reaction of NH4AlO(OH)HCO3 during stirring. The results show that the Al2O3 particles are distributed more uniformly in the matrix than that by direct adding of Al2O3 particles. Hardness and wear properties have also been examined and the results show that the hardness of the composites increases with increasing volume fraction of the reinforced particles. Wear rate of the composites decreases with increasing volume fraction of the reinforced particles and increases with the applied load. The mechanical properties of the composites prepared by adding of NH4AlO(OH)HCO3 are superior and more wearable than that prepared by direct adding of Al2O3 particles. Wearing mechanism of the surfaces of the unreinforced alloy and composites is dominantly abrasive.
364
Abstract: Li4Ti5O12 spinel-type anode materials were synthesized by high-energy ball milling and solid-state method using TiO2 (Anatase) and Li2CO3 as starting materials. The powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermo-gravimetric (TG)/differential scanning calorimetric (DSC). The results showed that Li4Ti5O12 in a single phase can be fabricated above 750 °C for 3h when the mixture powders were high-energy ball milled at 500r/m for 30min. The grain size was 0.3-0.5 m and particle size distribution was narrow.
369
Abstract: A waterborne two-package inorganic insulation coating was prepared by using silica sol and MTMS as raw materials, acetic acid as pH adjusting agent. The results showed the viscosities of paint were closely related to ambient temperature, acetic acid content and aging time. The coating on the treated aluminum alloy was obtained through spraying and curing. The coating was cured at 80 °C had high density, good physicochemical properties and higher resistance and electrical strength.
373
Abstract: LiFePO4/C composite powders were prepared by a simple reaction of as-synthesized FePO4•2H2O, LiOH•H2O, oxalic acid and citric acid. The influence of oxalic acid and citric acid in different ratios was investigated on morphology and electrochemical performance of LiFePO4/C composite powders. The characterization of the composites included X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis indicates that the material is well crystallized without impurities. The obtained LiFePO4/C composite powders with well dispersion at CA/OA ratio of 1:1.50 and the initial charge capacity reached 159.3 mAhg-1 at 0.1C rate, meanwhile, the particles prepared at 1:0.75 were close to spherical in shape and the specific capacity value was 149.8 mAhg-1 at 0.1C rate, with a slight decrease on greater C-rates reaching 141.3 mAhg-1 at 1C.
377

Showing 71 to 80 of 308 Paper Titles