[1]
D. Tabor, Microindentation Techniques in Materials Science and Engineering (edited by P.J. Blau and B. R. Lawn), ASTM Special Publ. 889, pp.129-159 (1985).
Google Scholar
[2]
A. G. Atkins, A. Siverio and D. Tabor, J. Inst. Metals 94, 369 (1966).
Google Scholar
[3]
W. W. Walker, The Science of Hardness Testing and its Research Applications (edited by J. H. Westbrook and H. Conrad), pp.258-273. Am. Soc. Metals, Metals Park, Ohio (1973).
Google Scholar
[4]
G. M. Carter, J. L. Henshall and R. M. Hooper, 2nd Int. Conf. on Materials and Engineering Design. Inst. Of Metals, London (1988).
Google Scholar
[5]
G. M. Carter, J. L. Henshall and R. M. Hooper, Commun. Am. Ceram. Soc. 71, C-27 (1988).
Google Scholar
[6]
R. M. Hooper and C. A. Brookes, J. Mater. Sci. 19, 4057 (1984).
Google Scholar
[7]
P. M. Sargent and M. F. Ashby, Int. Rep., Univ. of Cambridge (1989).
Google Scholar
[8]
W. B. Li, J. L. Henshall, R. M. Hooper and K. E. Easterling. The Mechanisms of indentation creep. Acta Metall. Mater. Vol. 39, No. 12, pp.3099-3110, (1991).
DOI: 10.1016/0956-7151(91)90043-z
Google Scholar
[9]
H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps. Pergamon Press, Oxford (1982).
Google Scholar
[10]
M. Lichinchi, C. Lenardi, J. Haupt and R. Vitali. Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films, 312, (1998). 240-248.
DOI: 10.1016/s0040-6090(97)00739-6
Google Scholar
[11]
S. Carlsson and P. –L. Larsson. On the determination of residual stress and strain fields by sharp indentation testing. Part I: theoretical and numerical analysis. Acta Mater. 49, (2001). 2179-2191.
DOI: 10.1016/s1359-6454(01)00122-7
Google Scholar