First-Principles Study the Effects of Single Zinc or Oxygen Vacancy on the Electronic and Optical Properties of V-Doped ZnO

Article Preview

Abstract:

We researched the effect of single zinc or oxygen vacancy on the electronic and optical properties of V-doped ZnO. All calculations were performed by CASTEP in materials studio software. Total energy showed that an oxygen vacancy inclined to stay at the position far from vanadium (V). A zinc vacancy preferred to localize at the position near V. The V atom substitution for zinc (Zn) introduced spin-polarization at Fermi-level. Vanadium made electronic density of states moved to lower energy. Vanadium doping broadened the density of states peaks of pure ZnO. An oxygen or Zn vacancy also broadened the density of states peaks of V-doped ZnO. The V doping introduced optical properties at lower energy. An oxygen vacancy improved lower-energy optical properties much. Our calculation provided a reference for the preparation and applications of V-doped ZnO in optical fields.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

114-118

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho and H. Morkoç: J. Appl. Phys. Vol. 98 (2005), p.041301.

DOI: 10.1063/1.1992666

Google Scholar

[2] S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J. Kelly and A.F. Hebard: J. Electron. Mater. Vol. 35 (2006), p.862.

DOI: 10.1007/bf02692541

Google Scholar

[3] L. Schmidt-Mende and J.L. MacManus-Driscoll: Mater. Today Vol. 10 (2007), p.40.

Google Scholar

[4] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger: Science Vol. 294 (2001), p.1488.

DOI: 10.1126/science.1065389

Google Scholar

[5] K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris and E.S. Aydil: Nano Lett. Vol. 7 (2007), p.1793.

DOI: 10.1021/nl070430o

Google Scholar

[6] A.B.F. Martinson, J.W. Elam, J.T. Hupp and M.J. Pellin: Nano Lett. Vol. 7 (2007), p.2183.

Google Scholar

[7] J. Sun, H.T. Wang, J.L. He and Y.J. Tian: Phys. Rev. B Vol. 71 (2005), p.125132.

Google Scholar

[8] R.M. Sheetz, I. Ponomareva, E. Richter, A.N. Andriotis and M. Menon: Phys. Rev. B Vol. 80 (2009), p.195314.

Google Scholar

[9] L. Zhao, P. -F. Lu, Z. -Y. Yu, Y. -M. Liu, D. -L. Wang and H. Ye: Chin. Phys. B Vol. 19 (2010), p.056104.

Google Scholar

[10] X.D. Zhang, M.L. Guo, W.X. Li and C.L. Liu: J. Appl. Phys. Vol. 103 (2008), p.063721.

Google Scholar

[11] X.D. Zhang, M.L. Guo, C.L. Liu, L.A. Zhang, W.Y. Zhang, Y.Q. Ding, Q. Wu and X. Feng: Eur. Phys. J. B Vol. 62 (2008), p.417.

Google Scholar

[12] L. Wang, L. Meng, V. Teixeira, S. Song, Z. Xu and X. Xu: Thin Solid Films Vol. 517 (2009), p.3721.

Google Scholar

[13] F. Pan, C. Song, X.J. Liu, Y.C. Yang and F. Zeng: Mater. Sci. Eng. R. Vol. 62 (2008), p.1.

Google Scholar

[14] R. Janisch, P. Gopal and N.A. Spaldin: J. Phys. -Condes. Matter Vol. 17 (2005), p. R657.

Google Scholar

[15] A. Janotti and C.G. Van de Walle: Phys. Rev. B Vol. 76 (2007), p.165202.

Google Scholar

[16] T. Naydenova, P. Atanasov, M. Koleva, N. Nedialkov, J. Perriere, D. Defourneau, H. Fukuoka, M. Obara, C. Baumgart, S. Zhou and H. Schmidt: Thin Solid Films Vol. 518 (2010), p.5505.

DOI: 10.1016/j.tsf.2010.04.034

Google Scholar

[17] H.J. Monkhorst and J.D. Pack: J. Appl. Phys. Vol. 13 (1976), p.5188.

Google Scholar

[18] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[19] H. Saeki, H. Matsui, T. Kawai and H. Tabata: J. Phys. -Condes. Matter Vol. 16 (2004), p. S5533.

Google Scholar