Characterization of Xanthan Production under Solid State Fermentation on Polyurethane Foam

Article Preview

Abstract:

Time courses of biomass, glucose and xanthan during solid state fermentation with various initial glucose concentrations were determined and analysed with a metabolic flux method. The use of 80 g L-1 instead of 40 and 20 g L-1 glucose led to higher xanthan production. In the stationary phase of cells, the velocities (ν) of all metabolic pathways are increased with increasing glucose concentration, while the highest specific rates (γ) of glucose consumption and xanthan generation was obtained when the initial glucose concentration was 40 g L-1. Hence, under solid-state fermentation, an abundant initial carbon source is advantageous in improving the velocity of xanthan production, while moderately abundant carbon sources promote the conversion of carbon to xanthan.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

1128-1132

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Gumus, A. Sukru-Demirci, M. Mirik, M. Arici and Y. Aysan: Food Sci. Technol. Vol. 19 (2010), p.201.

DOI: 10.1007/s10068-010-0027-9

Google Scholar

[2] S. Faria, P.A. Vieira, M.M. Resende, E.J. Ribeiro and V.L. Cardoso: LWT - Food Sci. Technol. Vol. 43 (2010), p.498.

Google Scholar

[3] S. Zhu, Y. Wu, Z. Yu, H. Tong, D. Cheng and D. Xie: Res. J. Microbiol., Vol. 5 (2010), p.676.

Google Scholar

[4] S.L. Gilani, G.D. Najafpour, H.D. Heydarzadeh and H. Zare: Chem. Ind. Chem. Eng. Q. Vol. 17 (2011), p.179.

Google Scholar

[5] H. Funahashi, T. Yoshida and H. Taguchi: J. Ferment. Tech. Vol. 65, (1987), p.603.

Google Scholar

[6] K. Born, V. Langendorff and P. Boulenguer. In: Biotechnology of biopolymer, edited by A. Steinbuchel and Y. Doi, volume 1 of Lignin, Coal, Polyisoprenoids, polyesters and polysaccharides, Wiley-VCH Verlag (2005).

Google Scholar

[7] M. Stredansky, and E. Conti: Process Biochem. Vol. 34 (1999), p.581.

Google Scholar

[8] Z.G. Zhang and H.Z. Chen, Appl. Biochem. Biotechnol. Vol. 162 (2010), p.2244.

Google Scholar

[9] X.F. Liu and X.Y. Wang: Acta Microbiol. Sinica Vol. 33 (1993), p.40 (In Chinese).

Google Scholar

[10] H.Z. Chen, F.J. Xu, Z.H. Tian and Z.H. Li: J. Biosci. Bioeng. Vol. 93 (2002), p.211.

Google Scholar

[11] H.Q. Li and H.Z. Chen: Chin. J. Biotechnol. Vol. 21 (2005), p.440 (In Chinese).

Google Scholar

[12] C.H. Hsu and Y.M. Lo: Process Biochem. Vol. 38 (2003), p.1617.

Google Scholar

[13] H. Ma, X. Zhao and Y. Tang: Chin. J. Chem. Eng. Vol. 7 (1999), p.321 (In Chinese).

Google Scholar

[14] A. Pons, C.G. Dussap and J.B. Gros: Biotechnol. Bioeng. Vol. 33 (1989), p.394.

Google Scholar

[15] C. Wittmann: Adv. Biochem. Eng. Biotechnol. Vol. 74 (2002), p.39.

Google Scholar

[16] A. Amanullah, L. Serrano-carreon, B. Castro, E. Galindo and A.W. Nienow: Biotechnol. Bioeng. Vol. 57 (1998), p.95.

DOI: 10.1002/(sici)1097-0290(19980105)57:1<95::aid-bit12>3.0.co;2-7

Google Scholar