Synthesis and Photochromism Properties of a Novel Hybrid Diarylethene

Article Preview

Abstract:

A novel unsymmetrical diarylethene derivative 1-[2-methyl-5-(3-trifluoromethylphenyl)-3-thienyl]-2-[2-methyl-5-(4-methoxyphenyl)-3-thienyl]hexafluorocyclopentene (1a) was designed and successfully synthesized. The properties of the compound, including photochromic and electrochemical properties of the diarylethene were also investigated systematically. The results showed that this compound exhibited reversible photochromism, reversible cyclization and cycloreversion reactions upon alternating irradiation with UV and visible light both in solution and in PMMA film, and its absorption maxima were observed at 606 nm in methanol and at 613 nm in PMMA amorphous film, respectively, upon irradiation with 297 nm UV light. Besides, the electrochemcial switching property can be potential use for electrochemistry data storage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

1506-1509

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Irie: Photo-reactive Materials for Ultrahigh-density Optical Memory (Elsevier Science Ltd. Europe 1994).

Google Scholar

[2] B.L. Feringa: Molecular Switches (Wiley-VCH: Weinheim, Germany 2001).

Google Scholar

[3] M. Irie: Chem. Rev. vol. 100 (2000), p.1685.

Google Scholar

[4] H. Tian and S.J. Yang: Chem. Soc. Rev. vol. 33 (2004), p.85.

Google Scholar

[5] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai and T. Kawai: Nature vol. 420 (2002), p.759.

DOI: 10.1038/420759a

Google Scholar

[6] H. Durr and H. Bouus-Laurent: Photochromism: Molecules and Systems (Elsevier, Amsterdam The Netherlands, 1990).

Google Scholar

[7] K. Matsuda and M. Irie: J. Photochem. Photobiol. C. vol. 5 (2004), p.169.

Google Scholar

[8] C. Bertarelli, A. Bianco, F. D'Amore, M.C. Gallazzi and G. Zerbi: Adv. Funct. Mater. vol. 14 (2004), p.357.

Google Scholar

[9] E. Kim, Y. -K. Choi and M. -H. Lee: Macromolecules, vol. 32 (1999), p.4855.

Google Scholar

[10] G. Guirado, C. Coudret, M. Hliwa and J.P. Launay: J. Phys. Chem. B vol. 109 (2005), p.17445.

Google Scholar

[11] W.R. Browne, J.J.D. de Jong, T. Kudernac, M. Walko, L.N. Lucas, K. Uchida, J.H. van Esch and B.L. Feringa: Chem. Eur. J. vol. 11 (2005), p.6414.

DOI: 10.1002/chem.200500162

Google Scholar

[12] W.R. Browne, J.J.D. de Jong, T. Kudernac, M. Walko, L.N. Lucas, K. Uchida, J.H. van Esch and B.L. Feringa: Chem. Eur. J. vol. 11 (2005), 6430.

DOI: 10.1002/chem.200500163

Google Scholar

[13] T. Okuyama, Y. Tani, K. Miyake and Y. Yokoyama: J. Org. Chem. vol. 72 (2007), p.1634.

Google Scholar

[14] Y. Tani, T. Ubukata and Y. Yokoyama: J. Org. Chem. vol. 72 (2007), p.1639.

Google Scholar

[15] K. Matsuda, S. Yamamoto and M. Irie: Tetrahedron Lett. Vol. 42 (2001), p.7291.

Google Scholar

[16] C.C. Corredor, Z.L. Huang and K.D. Belfield: Adv. Mater. vol. 18 (2006), p.2910.

Google Scholar

[17] H. Tian and Y.L. Feng: J. Mater. Chem. vol. 18 (2008), p.1617.

Google Scholar

[18] J.J. Zhang, W.J. Tan, X.L. Meng and H. Tian: J. Mater. Chem. vol. 19 (2009), p.5726.

Google Scholar

[19] H. Tian and S. Wang: Chem. Commun. (2007), p.781.

Google Scholar

[20] Y.L. Feng, Y.L. Yan, S. Wang, W.H. Zhu, S.X. Qian and H. Tian: J. Mater. Chem. vol. 16 (2006), p.3685.

Google Scholar

[21] K. Higashiguchi, K. Matsuda, N. Tanifuji and M. Irie: J. Am. Chem. Soc. vol. 127 (2005), p.8922.

Google Scholar

[22] D. Bonifazi, M. Scholl, F. Song, L. Echegoyen, G. Accorsi, N. Armaroli and F. Diederich: Angew. Chem. Int. Ed. vol. 42 (2003), p.4966.

DOI: 10.1002/anie.200352265

Google Scholar

[23] B. Gorodetsky, H. Samachetty, R.L. Donkers, M.S. Workentin and N.R. Branda: Angew. Chem. Int. Ed. vol. 43 (2004), p.2812.

DOI: 10.1002/anie.200353029

Google Scholar

[24] X. W. Zhan, Y. Q. Liu, X. Wu, S. Wang and D. B. Zhu: Macromolecules, vol. 35 (2002), p.2529.

Google Scholar