Study on Hot Deformation Behavior of TiNiFe Shape Memory Alloy

Article Preview

Abstract:

The hot deformation behavior of TiNiFe shape memory alloy were investigated by isothermal single-pass compression on Gleeble-3500 thermal simulator at the temperature range of 800°C to 1050°C and the strain rate range of 0.01s-1 to 10s-1. The results showed that the true stress-strain curves of TiNiFe shape memory alloy increase with decreasing deformation temperature and increasing strain rate, which indicating that the hot deformations of these conditions are dynamic recrystallization. The hot compression deformation of TiNiFe shape memory alloy can be represented by Arrhenius model. The constitutive equation of TiNiFe shape memory alloy under hot compression deformation is calculated by a linear regression analysis. The activation energy for hot deformation of the experimental steel is 202.54kJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

312-318

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Otsuka K, Wayman C M, Cambridge: Cambridge University Press , 1998 , 220~224.

Google Scholar

[2] L. -c. Zhao, W. Cai, Y. -f. Zheng, Beijing: National Defence Industry Press, 2002, 5~66.

Google Scholar

[3] Humbeeck J V. Mater Sci Eng A , 1999 , 2732275 : 134~148.

Google Scholar

[4] Carl P. Frick, Alicia M. Ortega, Jeffrey Tyber etc. Metallurgical and Materials Transactions A. 2004. 35: (2013).

Google Scholar

[5] F. -s. Liu, D. Han, L. Zhen, H. -b. Xu, Journal of Beijng University of Aeronautics and Astronautics, 2004, 30: 953~957.

Google Scholar

[6] Z. -r. He, F. Wang, J. -e. Zhou. Transaction of materials and heat treatment, 2005, 26: 21~26.

Google Scholar

[7] J. -t. Niu. Beijing: National defense industry press, 2007: 145-146.

Google Scholar

[8] j. -h. Chen. Dislocation and hardening. Shenyang: Liaoning Education Press, 1991: 537.

Google Scholar

[9] Z. -x. Wang, X. -f. Liu, J. -x. Xie, Acta Metallurgica Sinica, 2008, 44(11): 1378.

Google Scholar

[10] J. -s. Pan, J. -m. Tong, M. -b. Tian, Journal of Materials Science & Technology, 2005: 515.

Google Scholar

[11] W. -j. Liang, Q. -l. Pan, Y. -b. He, Y. -c. Li, X. -g. Zhang, Journal of Central South University of Technology , 15 (2008): 289–294.

Google Scholar

[12] X. -y. Liu, Q. -l. Pan, Y. -b. He et al. The Chinese Journal of Nonferrous Metals, 2009, 19(2): 201-207.

Google Scholar

[13] T. -q. Zhang, Y. -j. Wang, Y. Zhou et al. Rare Metal Materials and Engineering, 2005, 34(3): 385-388.

Google Scholar

[14] W. -b. Li, Q. -l. Pan, W. -j. Liang et al. The Chinese Journal of Nonferrous Metals, 2008, 18(5): 777-782.

Google Scholar

[15] X. -y. Liu, Q.L. Pan, Y.B. He, W.B. Li, W.J. Liang, Z.M. Yin, Materials Science and Engineering A 500 (2009) 150–154.

Google Scholar

[16] H. Zhang, L. Li, D. Yuan, D. Peng, Material Characterization 58 (2007) 168–173.

Google Scholar

[17] Y. Hui, Z. -h. Li, Z. -l. Zhang, Journal of Zhejiang University Science A 7 (8) (2006) 1453–1460.

Google Scholar

[18] Z. -y. Chen, S. -q. Xu, X.H. Dong, Acta Metallurgical Sinica (English Letters) 21 (No. 6) (2008) 451–458.

Google Scholar

[19] H.J. McQueen, N.D. Ryan, Materials Science and Engineering A 322 (2002)43–63.

Google Scholar

[20] S.F. Medina, C.A. Hernandez, Acta Materialia 44 (No. 1) (1996) 137–148.

Google Scholar