Recognition Patterns Construction of Coronary Heart Disease Patients with Qi Deficiency Syndrome Based on Artificial Neural Network

Article Preview

Abstract:

Coronary heart disease (CHD), called “thoracic obstruction” in TCM, is one of the most important types of heart disease for its high incidence and mortality. The methods of syndrome studies in TCM can not be completely in accordance with these of modern medicine because of the complexity itself. In this paper, we investigated the ability of Artificial Neural Networks (ANNs) to predict CHD patients with or without qi deficiency syndrome. Predictions with Multilayer Perceptron Neural Network (MPLNN, one type of the ANNS), we obtained recognition patterns made up of eight biological parameters. The accuracy of this recognition pattern was 82.2%, and the accuracy of validation pattern was 80.0%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

916-920

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. X Sun, C. Y Liao, Z. K Yuan, et al.: Chinese Journal of Integrative Medicine On Cardio-/Cerebrovascular Disease Vol. 6(2008), pp.706-707.

Google Scholar

[2] H. H Zhao, W. Wang: Acta Chimica Sinica Vol. 67(2009), pp.167-173.

Google Scholar

[3] H. H Zhao, J. X Chen, N. Hou, et al.: Evidence-based Compl. and Alt. Medicine Vol. 7(2010), pp.101-118.

Google Scholar

[4] H. H Zhao, F. Yang, W. Wang, et al.: Chemical Journal of Chinese Universities Vol. 31(2010), pp.285-292.

Google Scholar

[5] C. H Shi, H. H Zhao, N. Hou, et al.: Chemical Research in Chinese Universites Vol. 27(2011), pp.87-93.

Google Scholar

[6] G. Qi Qi, Y. Y Li, P. Zhang, et al.: Chinese Journal Of Traditional Chinese Medicine Vol. 26(2011), pp.380-383.

Google Scholar

[7] Y. P Tian, Y. M Yin, J. Qian, et al.: Chinese Journal of Radio Science Vol. 19(2004), pp.145-147.

Google Scholar

[8] Dayhof JE, Deleo JM.: Cancer Vol. 91(2001), pp.1615-1634.

Google Scholar

[9] Cross SS, Harrison RF and Kennedy RL: Lancet Vol. 346(1995), pp.1075-1079.

Google Scholar

[10] Camps VG, Porta OB, Soria OE, et al.: IEEE Trans Biomed Eng Vol. 50(2003), pp.442-448.

Google Scholar

[11] Akl AI, Sobh MA, Enab YM, et al.: Am J Kidney Dis Vol. 38(2001), pp.1277-1283.

Google Scholar

[12] Tangri. N, Ansell. D and Naimark. D: Nephrol Dial Transplant Vol. 23(2008), pp.2972-2981.

Google Scholar

[13] J. X Chen, G. C Xi, W. Wang, et al.: Beijing Biomedical Engineering Vol. 27(2008), p: 249-252.

Google Scholar

[14] W. J Wang, Y. X Ding: Chinese Journal of Integrated Traditional And Western Medicine Vol. 17 (1999), pp.319-320.

Google Scholar

[15] M. Z Xie,Y. Xie,H. M Tian, et al.: Chinese Journal of Information on TCM Vol. 13(2006), pp.22-23.

Google Scholar

[16] G. Qi Qi, Y. Y Li, J. X Chen, et al.: Chinese Journal of Integrative Medicine on Cardio-/ Cerebrovascular Disease Vol. 8(2010), pp.1418-1420.

Google Scholar

[17] Q. F Li, M. J Zhu, H. F Liu, et al.: World Journal of Integrated Traditional and Western Medicine Vol. 6(2011), pp.115-121.

Google Scholar

[18] M. Z Xie, Y. Xie, H. Y Huang, et al.: Journal of TCM Univ. of Hunan Vol. 25(2005), pp.41-45.

Google Scholar