OD-Characterization of the Symmetric Group S28

Article Preview

Abstract:

It is proved that the symmetric group S28 is characterized by its order and degree pattern. In fact, S28 is 3-fold OD-characterizable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

140-143

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. {\it Atlas of Finite Groups}, Clarendon Press (Oxford), London / New York, 1985.

Google Scholar

[2] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh. A characterization of finite simple groups by the degrees of vertices of their prime graphs: Algebra Colloquium, 12(3), (2005), 431-442.

DOI: 10.1142/s1005386705000398

Google Scholar

[3] A. R. Moghaddamfar and A. R. Zokayi. OD -Characterization of alternating and symmetric groups of degrees 16 and 22 , Frontiers of Mathematics in China, 4(4), (2009), 669-680.

DOI: 10.1007/s11464-009-0037-1

Google Scholar

[4] A. A. Hoseini and A. R. Moghaddamfar. it Recognizing alternating groups A_(p+3) for certain primes p by their orders and degree patterns, Frontiers of Mathematics in China, 5(3), (2010), 541-553.

DOI: 10.1007/s11464-010-0011-y

Google Scholar

[5] A. R. Moghaddamfar and A. R. Zokayi. Recognizing finite groups through order and degree pattern,in Algebra Colloquium, Algebra Colloquium, 15(3), (2008),449-456.

DOI: 10.1142/s1005386708000424

Google Scholar

[6] L. C. Zhang and W. J.Shi. OD-characterization of simple K_4-groups, Algebra Colloquium, 16(2), (2009), 275-282.

DOI: 10.1142/s1005386709000273

Google Scholar

[7] A. R. Moghaddamfar and A. R. Zokayi. OD-Characterizability of certain finite groups having connected prime graphs, Algebra Colloquium, 17(1), (2010), 121-130.

DOI: 10.1142/s1005386710000143

Google Scholar

[8] Y. X. Yan. OD -characterization of certain symmetric groups having connected prime graphs. Journal of Southwest University, 36(5), (2011), 112-115.

Google Scholar

[9] A.Zavarnitsine, V.D. Mazurov. Element orders in covering of symmetric and alternating groups. Algrbra and Logic, 38(3), (1999), 159-170.

DOI: 10.1007/bf02671740

Google Scholar

[10] A.V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian Electronic Mathematical Reports, 6, 2009, 1-12.

Google Scholar

[11] A. V. Zavarnitsin. Recognition of alternating groups of degrees r+1 and r+2 for prime r and the group of degree 16 by their element order sets, Algebra and Logic,39(6), (2000), 370-477.

Google Scholar

[12] J. S. Williams. Prime graph components of finite groups,Journal of Algebra, 69(2), (1981), 487-513.

DOI: 10.1016/0021-8693(81)90218-0

Google Scholar

[13] G. Higman. Finite groups in which every element has prime power order, London Math. Soc., 32, (1957), 335-342.

DOI: 10.1112/jlms/s1-32.3.335

Google Scholar

[14] L. C. Zhang and W. J. Shi. OD-Characterization of almost simple groups related to U_{3}(5) , Acta Mathematica Sinica (Series B), (1), (2010), 161-168.

DOI: 10.1007/s10114-010-7613-x

Google Scholar

[15] L. C. Zhang and W. J. Shi. OD-Characterization of almost simple groups related to U_{6}(2) , Acta Mathematica Scientia (Series B), 31B(2), (2011), 441-450.

DOI: 10.1016/s0252-9602(11)60244-0

Google Scholar