Ultrasonic Degradation of Dextran in Aqueous Solution

Article Preview

Abstract:

An ultrasonic device with frequency of 20 kHz was used to investigate the effect of different operational parameters such as ultrasonic power, temperature and initial molecular weight on dextran degradation. Results show that the molecular weight of dextran can be controlled by ultrasonic treatment. Higher the ultrasonic power and lower the temperature could increase the degradation rate (R).The initial molecular weight plays an important role in at the initial stage of dextran degradation (within 20 minutes). A smilar limiting molecular weight (Mw≈8.7×104) was obtained after 2 hours ultrasonic treatment for four different initial molecular weight dextrans, suggesting that the limiting molecular weight is independent on the initial molecular weight of dextran. Ultrasonic treatment can be used as a safe, simple and effective method to control the molecular weight of dextran.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

1624-1627

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F. Robyt, S.H. Yoon and R. Mukerjea: Carbohyd. Res. Vol. 343 (2008), p.3039

Google Scholar

[2] R.K. Purama, P. Goswami, A.T. Khan and A. Goyal: Carbohyd. Polym. Vol. 76 (2009), p.30

Google Scholar

[3] D.J. Falconer, R. Mukerjea and J.F. Robyt: Carbohyd. Res. Vol. 346 (2011), p.280

Google Scholar

[4] M.H. Vettori, R. Mukerjea and J.F. Robyt: Carbohyd. Res. Vol. 346 (2011), p.1077

Google Scholar

[5] H. Kawakita, H. Seto, K. Ohto, K. Inoue and H. Harada: Biochem. Eng. J. Vol. 36 (2007), p.190

Google Scholar

[6] H. Seto, K. Ohto and H. Kawakita: J. Membrane Sci. Vol. 370 (2011), p.76

Google Scholar

[7] G. Faich and J. Strobos: American Journal of Kidney Diseases, Vol. 33 (1999), p.464

Google Scholar

[8] A.J. Bircher, H. Hedin and A. Berglund: J. Allergy Clin. Immunol. Vol. 95 (1995), p.633

Google Scholar

[9] K.C. Mountzouris, S.G. Gilmour, and R.A. Rastall: J. Food Sci. Vol. 67 (2001), p.1767

Google Scholar

[10] G. Madras, S. Kumar and S. Chattopadhyay: Polym. Degrad. Stabil. Vol. 69 (2000), p.73

Google Scholar

[11] S. Trzcinski and D.U. Staszewska: Carbohyd. Polym. Vol. 56 (2004), p.489

Google Scholar

[12] R.M. Alsop and G.J. Vlachogiannis: J. Chromatogr. A. Vol. 246 (1982), p.227

Google Scholar

[13] J. Li, Y. Du, P. Yao and Y. Wei: Acta. Polymerica. Sinica (In Chinese). Vol. 5 (2007), p.401

Google Scholar

[14] S. Koda, H. Mori, K. Matsumoto and H. Nomura: Polymer. Vol. 35 (1994), p.30

Google Scholar