[1]
F. Kuang, D. Zhang, J. Wang, L. Yan, Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel, Electrochim. Acta 52 (2007) 6084-6088.
DOI: 10.1016/j.electacta.2007.03.041
Google Scholar
[2]
W. P. Iverson, Advances in Corrosion Science and Technology, Int. Biodeterior. Biodegrad. 2 (1972) 1-42.
Google Scholar
[3]
M. A. N. Almeida, F.P. de França, Thermophilic and mesophilic bacteria in biofilms associated with corrosion, World J. Microbiol. Biotechnol. 15 (1999) 439-442.
Google Scholar
[4]
E. P.Rozanova, G. A. Dubinina, E. V. Lebedeva, L. A. Suntsova, V. M. Lipovskich, N. N. Tsvetkov, Microorganisms in Heat Supply Systems and Internal Corrosion of Steel Pipelines, Microbiology 72 (2003) 179-186.
Google Scholar
[5]
R. Torres-Sanchez, A. Magaňa-Vazquez, High temperature microbial corrosion in the condenser of a geothermal electric power unit, Mater. Performance 36 (1997) 43-46.
Google Scholar
[6]
R. Torres-Sanchez, J. García-Vargas, A. Alfonso-Alonso, L. Martínez-GÓmez, Corrosion of AISI 304 stainless steel induced by thermophilic sulfate reducing bacteria (SRB) from a geothermal power unit, Mater. Corros. 52 (2001) 614-618.
DOI: 10.1002/1521-4176(200108)52:8<614::aid-maco614>3.0.co;2-g
Google Scholar
[7]
E. A. Henry, R. Devereux, J. S. Maki, C. C. Gilmour, C. R. Woese, L. Mandelco, R. Schauder, C. C. Remsen, R. Mitchell, Characterization of a new thermophilic sulfate-reducing bacterium, Arch. Microbiol. 161 (1994) 62-69.
DOI: 10.1007/bf00248894
Google Scholar
[8]
L. Fushao, D. Dongxia, L. Guangzhou, A. Maozhong, Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels, Mater. Chem. Phys. 113 (2009) 971-976.
DOI: 10.1016/j.matchemphys.2008.08.077
Google Scholar
[9]
J. R. Postgate, Recent Advances in the Study of the Sulfate-Reducing Bacteria, Bacteriological Reviews 29 (1965) 425-441.
DOI: 10.1128/br.29.4.425-441.1965
Google Scholar
[10]
W. Allan Hamilton, Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact, Biodegradation 9 (1998) 201-212.
Google Scholar
[11]
P.N.L. Lens, J.G. Kuenen, The biological sulfur cycle: novel opportunities for environmental biotechnology, Water. Sci. Technol. 44 (2001) 57-66.
DOI: 10.2166/wst.2001.0464
Google Scholar
[12]
L.S. Moiseeva, O.V. Kondrova, Biocorrosion of Oil and Gas Field Equipment and Chemical Methods for Its Suppression, I. Prot. Met. 41 (2005) 417-426.
DOI: 10.1007/s11124-005-0054-8
Google Scholar
[13]
T. Kimberley, N. Mehdi, B. Vikrama, Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries, Biochem. Eng. J. 44 (2009) 73-94.
DOI: 10.1016/j.bej.2008.12.011
Google Scholar
[14]
M. Kyung-Man, C. Hwang-Rae, L. Myung-Hoon, S. Sung-Kyu, K. Sung-Cheol, Electrochemical Analysis of the Microbiologically Influenced Corrosion of Steels by Sulfate-Reducing Bacteria, Met. Mater. 13 (2007) 211-216.
DOI: 10.1007/bf03027807
Google Scholar