Synthesis and Measurement of SnO2@C/graphene Nanocomposite for Lithium Ion Batteries

Article Preview

Abstract:

SnO2@C/graphene nanocomposite was prepared via chemical synthesis method. The electrochemical performance of the SnO2@C/graphene nanocomposite as anode material was measured by galvanostatic charge/discharge cycling. As an anode material for Li ion batteries, the SnO2@C/graphene nanocomposite shows 823mAhg-1 and 732mAhg-1 capacities for the first discharge and charge, respectively, which is more than the theoretical capacity of tin oxide, and has good capacity retention with a capacity of 748mAhg-1 after 30 cycles. These results suggest that SnO2@C/graphene nanocomposite would be a promising anode material for lithium ion battery.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

2330-2333

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tarascon JM, Armand M. Nature 2001;414:359–67.

Google Scholar

[2] J.M. Tarascon, P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, Nature 407 (2000) 496.

Google Scholar

[3] Wang C, Zhou Y, Ge MY, Xu XB, Zhang ZL, Jiang JZ. J Am Chem Soc 2010;132:46–7.

Google Scholar

[4] Y. Wang, J.Y. Lee, H.C. Zeng, Chem. Mater. 17 (2005) 3899.

Google Scholar

[5] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18 (2006) 2325.

Google Scholar

[6] J.S. Chen, Y.L. Cheah, Y.T. Chen, N.J. Jayaprakash, S. Madhavi, Y.H. Yang, X.W. Lou, J. Phys. Chem. C 113 (2009) 20504.

Google Scholar

[7] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV. Science 205 2004;306:666–9.

Google Scholar

[8] J. Yang, M. Winter, J. O. Besenhard, Solid State Ionics 90 (1996) 281.

Google Scholar

[9] S. H. Lee, M. Mathews, H. Toghiani, D. O. Wipf, C. U. Pittman, Chem. Mater21 (2009) 2306.

Google Scholar

[10] S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Nature467 (2010) 190–193.

Google Scholar

[11] J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Science 270 (1995) 590.

Google Scholar

[12] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.

Google Scholar

[13] S.R. Mukai, T. Hasegawa, M. Takagi, H. Tamon, Carbon 42 (2004) 837–842.

Google Scholar

[14] W.B. Xing, J.R. Dahn, J. Electrochem. Soc. 144 (1997) 1195–1201.

Google Scholar

[15] P. C. Lian, X. F. Zhu, S. Z. Liang, Z. Li, W. S. Yang, H. H. Wang, Electrochim. Acta 55 (2010) 3909.

Google Scholar

[16] Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, J. Mater. Chem. 20 (2010) 743.

Google Scholar

[17] E. J. Yoo, J. Kim, E. Hosono, H. S. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277.

Google Scholar

[18] P. Guo, H. Song, X. Chen, Electrochem. Commun. 11 (2009) 1320.

Google Scholar

[19] G. X. Wang, X. P. Shen, J. Yao, J. Park, Carbon 47 (2009) 2049.

Google Scholar

[20] D. Y. Pan, S. Wang, B. Zhao, M. H. Wu, H. J. Zhang, Y. Wang, Z. Jiao, Chem. Mater. 21 (2009) 3136.

Google Scholar

[21] Y. S. He, D. W. Bai, X. W. Yang, J. Chen, X. Z. Liao, Z. F. Ma, Electrochem. Commun. 12 (2010) 570.

Google Scholar

[22] S. B. Yang, G. L. Cui, S. P. Pang, Q. Cao, U. Kolb, X. L. Feng, J. Maier, Chem. Sus. Chem., 2009, 2, 236.

Google Scholar

[23] S. M. Paek, E. J. Yoo, I. Honma, Nano Lett. 9 (2009) 72.

Google Scholar

[24] F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, A. Ivaska, L. Niu, Nanotech. 20 (2009) 455602.

Google Scholar

[25] J. Yao, X. P.Shen, B. Wang, H.K. Liu, G.X. Wang, Electrochem. Commun. 11 (2009) 1849.

Google Scholar