Effect of Solvent Polarity Properties on the Selectivity and Activity for 3,4-Dichloronitrobenzene Hydrogenation over Pd/C Catalyst

Article Preview

Abstract:

Several representative solvents classified in three categories: 1) aprotic apolar solvents: 2) protic solvents; 3) aprotic polar solvents were chosen to investigate the effect on the catalytic activity and selectivity for the selective hydrogenation of 3,4-dichloronitrobenzene (3,4-DCNB) over Pd/C catalyst. The solvent polarity increases the hydrogenation rate apparently, but also increases the selectivity to 3-chloroaniline and 4-chloroaniline from dehalogenation reaction. The solvents with the high polarity and hydrogen-bond donation capability can generate the strong interaction and the H-bond with nitro group of 3,4-DCNB, and then promote the activation and polarization of nitro group. However, on basis of the result of water as solvent, the higher hydrogenation rate in polarity solvents, to a larger extent, may be attributed to the increase of the amount of reactive chemisorbed hydrogen resulting from the dissociative chemisorption of aprotic polar solvents over the activated metal surface. At the same time, this is why the selectivity to 3-chloroaniline and 4-chloroaniline from dehalogenation reaction increase obviously with the increase of solvent polarity, because the amount of reactive chemisorbed hydrogen on the catalytic activated sites exceeds the needs of nitro group reduction and then surplus hydrogen reacts with the C-X bond.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

2379-2383

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Y. Fan, L. Zhang, H.Y. Fu, M.L. Yuan, R.X. Li, H. Chen and X.J. Li. Catal. Commun., Vol. 11 (2010), p.451.

Google Scholar

[2] X. Yuan, N. Yan, C.X. Xiao, C.N. Li, Z.F. Fei, Z.P. Cai, Y. Kou and P. J. Dyson. Green Chem., Vol. 12 (2010), p.228.

Google Scholar

[3] J.R. Kosak, in: Catalysis in Organic Syntheses, edtied by W.H. Jones, Academic Press, NY(1980), p.107.

Google Scholar

[4] W.X. Tu, S.J. Cao, L.P. Yang and W.C. Wang. Chem. Eng. J., Vol. 143 (2008), p.244.

Google Scholar

[5] V.R. Chandrashekhar and R.V. Chaudhari. Ind. Eng. Chem. Res., Vol. 33 (1994), p.1645.

Google Scholar

[6] D.P. He, H. Shi, Y. Wu and B.Q. Xu. Green Chem., Vol. 9 (2007), p.849.

Google Scholar

[7] C.X. Xiao, H.Z. Wang, X.D. Mu and Y. Kou. J. Catal., Vol. 250 (2007), p.25.

Google Scholar

[8] X.C. Meng, H.Y. Cheng, S.I. Fujita, Y.F. Hao, Y.J. Shang, Y.C. Yu, S.X. Cai, F.Y. Zhao and M. Arai. J. Catal., Vol. 269 (2010), p.131.

Google Scholar

[9] H. Y. Cheng, C. Y. Xi, X.C. Meng, Y. F. Hao, Y. C. Yu and F. Y. Zhao, J. Colloid Interface Sci., Vol. 336 (2009), p.675.

Google Scholar

[10] N. M. Bertero, A. F. Trasarti, C. R. Apesteguía and A. J. Marchi. Appl. Catal., A: General, Vol. 394 (2011), p.228.

Google Scholar

[11] N. Yao, J. X. Chen, J. X. Zhang and J. Y. Zhang. Catal. Commun., Vol. 9 (2008), p.1510.

Google Scholar

[12] Y. Marcus. Chem. Soc. Rev., Vol. 22 (1993), p.409.

Google Scholar

[13] C. Reichardt. Chem. Rev., Vol. 94 (1994), p.2319.

Google Scholar

[14] B. Chen, U. Dingerdissen, J. G. E. Krauter, H. G. J. Lansink rotgerink, K. MÖBUS, D. J. Ostgard, P. Panster, T. H. riermeier, S. Seebald, T. Tacke and H. Trauthwein, Appl. Catal., A: General, Vol. 280 (2005), p.17.

DOI: 10.1016/j.apcata.2004.08.025

Google Scholar