Adsorption of Cu(II) onto HNO3-Modified Cedar Sawdust (Cedrus deodara): FTIR Analysis, Kinetics and Adsorption Isotherms Modeling

Article Preview

Abstract:

Cedar sawdust (Cedrus deodara), an agricultural by-product abundant in China, was used as an adsorbent for the removal of Cu(II) from aqueous solutions. The extent of adsorption was investigated as a function of pH, contact time, adsorbate concentration and reaction temperature. The Cu(II) removal was pH-dependent, reaching a maximum at pH 5. The adsorption process followed pseudo-second-order kinetics and equilibrium was reached at 60 min. The rate constantly increased with the increase of temperature, indicating the endothermic nature of adsorption. The equilibrium adsorption capacity of Cu(II) determined from the Langmuir equation was 64.52 mg/g at 25°C. The equilibrium data fitted very well to the Freundlich isotherm model as compared to the Langmuir isotherm. The negative ΔGo values at various temperatures confirm that the adsorption processes are spontaneous. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis of cedar sawdust, before and after adsorption of Cu(II), suggested that the main mechanisms involved in the removal of Cu(II) might be the ionic exchange and complexation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

2388-2393

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. I. Kandah, F. A. A Al-Rub, N. Al-Dabaybeh: Adsorpt. Sci. Technol. 21(6) (2003), 501–509.

Google Scholar

[2] Özer, D. Özer, A. Özer: Process Biochem. 39 (2004) 2183–2191.

Google Scholar

[3] C. S. Zhu, L. P. Wang, W. B. Chen: J. Hazard. Mater. 168 (2009) 739–746.

Google Scholar

[4] W. M. Antunes, A. S. Luna, C. A, Henriques, A. C. Costa: Biotechnology 6 (2003) 174–184.

Google Scholar

[5] Z. Aksu, I. A. Isoğlu: Process Biochem. 40 (2005) 3031–3044.

Google Scholar

[6] Y. Bulut, Z. Tez:Fresenius Environ. Bull. 12(12) 2003: 1499–1 504.

Google Scholar

[7] B. Yu, Y. Zhang, A. Shukla, S. S. Shukla, K. L. Dorris : J. Hazard. Mater. B84 (2001) 83–94

Google Scholar

[8] R. Djeribi, O. Hamdaoui : Desalination 225 (2008) 85–112.

Google Scholar

[9] M. Ajmal, A.H. Khan, S. Ahmad and A. Ahmad: Water Res. 32(1998)3085–3091.

Google Scholar

[10] M. H. Kalavathy, T. Karthikeyan, S. Rajgopal, L. R. Miranda: J. Colloid Interface Sci. 292(2005) 354–362.

Google Scholar

[11] Z. R. Volesky, Holan: Biotechnol. Progr. 11 (3) (1995) 235–250.

Google Scholar

[12] Z. Reddad, C. Gerente, Y. Andres, P. LeCloirec: Environ. Sci. Technol. 36(2002) 2067–2073.

Google Scholar

[13] H. A. Elliot, C. P. Huang: Water Res. 15 (1981) 849–855.

Google Scholar

[14] A. Krishnan, T. S. Anirudhan: J. Hazard. Mater. 92 (2) (2002), 161–183.

Google Scholar

[15] R. Hall, L. C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam. 5(1966) 212–223.

Google Scholar

[16] A. Wahab, S. Jellali, N. Jedidi: Bioresour. Technol. 101 (2010) 5070–5075.

Google Scholar

[17] K. Jain. Adsorption of zinc onto bed sediments of the River Ganga: adsorption models and kinetic. Hydrolog. Sci. J. 46(3) (2001) 419–434

DOI: 10.1080/02626660109492836

Google Scholar

[18] B. Stuart. Modern infrared spectroscopy. wily.chister.uk (1996)

Google Scholar

[19] M. Dundar, C. Nuhoglu, Y. Nuhoglu: J. Hazard. Mater.151 (2008) 86–95

Google Scholar