Theoretical Study of the 1CHBr + 3O2 Reaction

Article Preview

Abstract:

The mechanism of the reaction of the monobromocarbene (1CHBr) with 3O2 was studied theoretically at the B3LYP/6-311++G(d,p) level on the singlet potential energy surface (PES). All structures of the stationary points (reactants, intermediates, transition states and products) were optimized and their energies were obtained. Three product channels, P1 (HCO + BrO), P2 (CO2 + HBr) and P3 (CO + HOBr), are found. P2 (CO2 + HBr) is the most favorable one both kinetically and thermodynamically.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

2438-2442

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.S. McGivern, O. Sorkhabi, A.G. Suits, A. Deresckei-Kovacs, S.W. North: J. Phys. Chem. A Vol. 104 (2000), p.10085

Google Scholar

[2] D. Xu, J.S. Fancisco, J. Huang, W. Jackson, J. Chem. Phys Vol. 117 (2002), p.2578

Google Scholar

[3] C. Duan, M. Hassouna, A. Walters, M. Godon, P. Drean, and M. Bogeya: J. Mol. Spectrosc Vol. 220 (2003), p.113

Google Scholar

[4] M. Deselnicu, C. Tao, C. Mukarakate, and S. A. Reid: J. Chem. Phys Vol. 124 (2006), p.134302

Google Scholar

[5] W. Z. Chang, H. J. Hsu and B. C. Chang: Chem. Phys. Lett Vol. 413 (2005), p.25

Google Scholar

[6] C. Tao, M. Deselnicu, C. Mukarakate, and S. A. Reida: J. Chem. Phys Vol. 125 (2006), p.094305

Google Scholar

[7] B. C. Chang, J. Guss, and T. J. Sears: J. Mol. Spectrosc Vol. 219 (2003), p.136

Google Scholar

[8] G. E. Hall, T. J. Sears, and H. G. Yu: J. Mol. Spectrosc Vol. 235 (2006), p.125

Google Scholar

[9] C. L. Lee, M. L. Liu, and B. C. Chang: Phys. Chem. Chem. Phys Vol. 5 (2003), p.3859

Google Scholar

[10] A. J. Marr, S. W. North, T. J. Sears, L. Ruslen, and R. W. Field: J. Mol. Spectrosc Vol. 188 (1998), p.68

Google Scholar

[11] H. G. Yu, J. T. Muckerman, and T. J. Sears: J. Chem. Phys Vol.116 (2002), p.1435.

Google Scholar

[12] K. K. Murray, D. G. Leopold,T. M. Miller, and W. C. Lineberger: J. Chem. Phys Vol.89 (1988), p.5442

Google Scholar

[13] T. C. Tsai, C. W. Chen, and B. C. Chang: J. Chem. Phys Vol.115 (2001), p.766.

Google Scholar

[14] B. C. Chang, M. L. Costen, A. J. Marr,G. Ritchie, G. E. Hall, and T. J. Sears: J. Mol. Spectrosc Vol. 202 (2000), p.131

Google Scholar

[15] B. C. Chang and T. J. Sears: J.Chem. Phys Vol. 105 (1996), p.2135.

Google Scholar

[16] M. K. Gilles, K. M. Ervin, J. Ho, and W. C. Lineberger: J. Phys.Chem Vol. 96 (1992), p.1130

Google Scholar

[17] H. G Yu, T. G. Lezana, A. J. Marr, J. T. Muckerman, and T. J. Sears: J. Chem. Phys Vol.115 (2001), p.5433

Google Scholar

[18] S. Xu, K. A. Beran, and M. D. Harmony: J. Phys. Chem Vol. 98 (1994), p.2742

Google Scholar

[19] G. E. Scuseria, M. Duran, R. G. A. R. Maclagan, and H. F. Schaefer III: J. Am. Chem. Soc Vol. 108 (1986), p.3248

Google Scholar

[20] A. J. Marr and T. J. Sears: J. Mol. Spectrosc Vol. 195 (1999), p.367

Google Scholar

[21] R. Hoffmann, G. D. Zeiss, and G. W. V. Dine: J. Am. Chem. Soc., Vol. 90 (1968), p.1485

Google Scholar

[22] D. A. Dixon, W. A. de Jong, K. A. Peterson, and J. S. Francisco: J. Phys. Chem. A, Vol. 106 (2002), p.4725

Google Scholar

[23] G. B. Bacskay: J. Phys. Chem. A Vol. 114 (2010), p.8625

Google Scholar

[24] M. Born, S. Ingemann, and N. M. M. Nibbering: J. Am. Chem. Soc Vol. 116(1994), p.7210

Google Scholar

[25] C. W. B. Jr., H. F. Schaefer III, and P. S. Bagus: J. Am. Chem. Soc Vol. 99(1977), p.7106

Google Scholar

[26] M. Schwartz and P. Marshall: J. Phys. Chem. A Vol. 103(1999), p.7900

Google Scholar

[27] M. Born, S. Ingemann and N. M.M. Nibbering: Int. J. Mass spectrom Vol. 194 (2000), p.103

Google Scholar

[28] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03. Revision B.05, Gaussian, Inc., Pittsburgh, PA, 2003.

Google Scholar